

MOTHERTERESAWOMEN'SUNIVERSITY KODAIKANAL - 624101

2023

DEPARTMENT OF PHYSICS

B.Sc.PHYSICS

Curriculum Framework, Syllabus and Regulations (Based on TANSCHE Syllabus underChoice Based Credit Systems – CBCS)

(For the candidates to be admitted from the Academic Year2023-24)

MotherTeresaWomen'sUniversity

1 | Page

B.Sc., PHYSICS

Preamble

Physics is one of the basic and fundamental sciences. The curriculum for the graduate programme in Physics is revised as per the UGC guidelines on the Learning Outcome-based course framework. The learner-centric courses let the student progressively develop a deeper understanding of various aspects of physics.

The new curriculum offers courses in the core areas of mechanics, acoustics, opticsand spectroscopy, electricity and magnetism, atomic and nuclear physics, solid state, electronics and other fields. The courses will train students with sound theoretical and experimental knowledge that suits the needs of academics and industry. In addition to the theoretical course work, the students also learn physics laboratory methods for different branches of physics, specialized measurement techniques, analysis of observational data, including error estimation, etc. The students will have a deeper understanding of the laws of nature through subjects like classical mechanics, quantum mechanics, statistical physics, etc. The problem-solving ability of students will be enhanced. The students can apply principles in physics to real-life problems. Courses like integrated electronics and microprocessors willenhance logicalskills as wellas employabilityskills. Numerical methods and mathematical physics provide analyticalthinking and provide a better platform for higher-level physics for research.

Theirstructuredcourses with well-defined objectives and learningoutcomesguide prospective students in choosing elective courses to broaden their skills not only in the field of physics but also in interdisciplinary areas. The elective modules of the framework offer students the choice to gain knowledge and expertise in specialized domains of physics like astrophysics, medical physics, etc.

FRAMEWORK FOR				
D	UNDERGRADUATEEDUCATION			
Programme	B.Sc.,Physics			
Programme				
Code				
Duration	3years[UG]			
Programme	PO1:Disciplinaryknowledge:			
Outcomes:	Capableofdemonstratingcomprehensiveknowledgeandunderstanding			
(Theseare	Ofoneormoredisciplinesthatformapartofanundergraduate			
mere	programme ofstudy			
guidelines.	PO2:Communication Skills:			
Facultycan	Abilitytoexpressthoughtsandideaseffectivelyinwritingandorally			
CreatePOs	Communicate with others using appropriate media; confidently share			
based on their	one'sviewsandexpressherself/himself;demonstratetheabilitytolisten			
Curriculumor	carefully;readandwriteanalyticallyandpresentcomplexinformationin			
Adoptfrom	A clearandconcise mannertodifferentgroups.			
UGCorthe	PO3:Criticalthinking:			
Universityfor	Capabilitytoapplytheanalyticthoughttoabodyofknowledge; analyse			
their	Andevaluatetheproofs, arguments, claims, beliefs on the basis of			
Programme)	Empiricalevidences; identify relevant assumptions or implications;			
_	Formulatecoherentarguments; critically evaluate practices, policies and			
	Theoriesbyfollowingscientificapproach.			
	PO4:Problemsolving:			

TANSCHE REGULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM

Consistent to antropolate from what are her located and a 1 (1)
competencies to solve different kinds of non-familiar problems, rathe than replicate curriculum content knowledge; and applyone's learning to real life situations.
PO5: Analytical reasoning:
Ability to evaluate the reliability and relevance of evidence; identify
 logical flaws and holes in the arguments of others; analyze andsynthesized data from a variety of sources; draw valid conclusions and support them with evidence and examples, and addressing opposing viewpoints. PO6:Research-relatedskills:
A sense of inquiry and capability for asking relevant/appropriat
questions, problem arising, synthesising and articulating; Ability to recognise cause-and-effect relationships, define problems, formulat hypotheses, test hypotheses, analyse, interpret and draw conclusionsfrom data, establish hypotheses, predict cause-and-effect relationships; ability
to plan, execute and report the results of an experiment or investigation
PO7:Cooperation/Teamwork:
Abilityto work effectivelyand respectfully with diverse teams; facilitate
cooperative or coordinated effort on he part of a group, and act togethe
as a group or a team in the interests of a common cause and work
efficiently as a member of a team
PO8: Scientificreasoning:
Ability to analyse, interpret and draw conclusions from
quantitative/qualitative data; and critically evaluate ideas, evidence and
DOUB of the structure in the structure in the structure in the structure is the structure in the structure is the structure
Critical sensibility to lived experiences with self-awareness and
reflexivity of both self and society
PO10Information/digitalliteracy:
Capability to use ICT in a variety of learning situations, demonstrat ability to access, evaluate, and use a variety of relevant information
PO11Solf_directed loorning:
Ability to work independently identify appropriate resources required to
a project, and manage a project through to completion
PO12Multiculturalcompetence:
Possess knowledge of the values and beliefs of multiple cultures and
globalperspective; and capabilityto effectivelyengage ina multicultura
society and interact respectfully with diverse groups.
PO 13:Moralandethicalawareness/reasoning:
Ability to embrace moral/ethical values in conducting one's life
formulate a position/argument about an ethical issue from multipl
perspectives, and use ethical practices in all work. Capable of demonstrating the ability to identify ethical issues related to one's work
avoid unethical behaviour such as fabrication, falsification of
misrepresentation of data or committing plagiarism, not adhering to intellectualpropertyrights;appreciatingenvironmentalandsustainability issues;andadoptingobjective,unbiasedandtruthfulactionsinall

-	0	-	-
.,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,	×.
4	U.	4	J

	Aspectsofwork.				
	PO14:Leadership readiness/qualities:				
	Capability for mapping out the tasks of a team or an organization, and				
	setting direction, formulating an inspiring vision, building a team who				
	can help achieve the vision, motivating and inspiring team members to				
	engage with that vision, and using management skills to guide people to				
	the right destination, in a smooth and efficient way.				
	PO15:Lifelong learning:				
	Ability to acquire knowledge and skills, including "learning how to				
	learn", that are necessary for participating in learning activities				
	throughout life, through self-paced and self-directed learning aimed at				
	personaldevelopment, meeting economic, social and cultural objectives,				
	and adapting to changing trades and demands of work place through				
	knowledge/skill development/reskilling.				
Programme	PSO1:Placement:				
Specific	To prepare the students who will demonstrate respectful engagement with				
Outcomes:	others' ideas, behaviors, and beliefs and apply diverse frames of				
	reference to decisions and actions.				
(These are	PSO 2:Entrepreneur:				
mere	To create effective entrepreneurs by enhancing their critical thinking,				
guidelines.	problem solving, decision making and leadership skill that will facilitate				
Faculty can	start-ups and high potential organizations				
create POs	PSO3:Researchand Development:				
basedontheir	Design and implement HR systems and practices grounded in research				
curriculumor	that comply with employment laws, leading the organization towards				
adopt from	growth and development.				
UGC or	PSO4:ContributiontoBusiness World:				
Universityfor	Toproduceemployable, ethical and innovative professional stosustain in the				
their	dynamic business world.				
Programme)	PSO5:ContributiontotheSociety:				
	To contribute to the development of the society by collaborating with				
	stakeholders for mutual benefit				

WRITTENEXAMINATIONQUESTIONPAPERPATTERN

TheoryPaper(Bloom'sTaxonomy based)

(CommonforUG,PG,Certificate,DiplomaandP.G.Diploma Programmes)

IntendedLearningSkills	Maximum75Marks PassingMinimum:50% Duration: Three Hours
Memory Recall/Example/	Part-A(10x2=20Marks)
CounterExample/Knowledge	AnswerALLquestions
Aboutthe Concepts/Understanding	EachQuestion carries2marks

MotherTeresaWomen'sUniversity

B.Sc.Physics-Syllabus

	TwoquestionsfromeachUnit
	Question1toQuestion10
	Part–B(5x5=25Marks)Answer
	ALL questions
	Eachquestioncarries5Marks
Descriptions/Application	Either-orType
(problems)	BothpartsofeachquestionfromthesameUnit
	Question 11(a)or11(b)
	to
	Question 15(a)or15(b)
	Part-C (3x10=30Marks)
	Answerany THREE questions
	Eachquestioncarries10Marks
Analysis/Synthesis/Evaluation	ThereshallbeFIVEquestionscoveringallthe
	Fiveunits
	Question 16to Question20

B.Sc.Physics-Syllabus

SYLLABUSFRAMEWORKFORUGPROGRAMMES (As per TANSCHE –From 2023 – 2024) B.Sc.PHYSICS

SEMESTER -I

Part	CourseCode	CourseTitle	Credit	No.of Hours	CIA	ESE	Total Marks
Part-1	U23TAL101/ U23MAL10 1/ U23FRL101 / U23HIL101	Language – 1: Tamil / Malayalam/French/Hindi	3	6	25	75	100
Part-2	U23ENL101	Language2- English	3	6	25	75	100
Part-3	U23PHT101	Core Theory – 1: PropertiesofMatterand Acoustics	5	5	25	75	100
	U23PHP102	CorePractical - 1	5	5	25	75	100
	U23PHAE11	SubjectBasedElective-I(Allied-1): Mathematics	3	4	25	75	100
Part-4	U23PHS11A /U23PHS11B	SkillEnhancementCourse1 (AdvancedMathematical Physics/EnergyPhysics)	2	2	25	75	100
	U23PHF101	FoundationCourse: IntroductoryPhysics	2	2	25	75	100
	TOTAL		23	30			

SEMESTER -- II

Part	CourseCode	CourseTitle	Credit	No.of Hours	CIA	ESE	Total Marks
Part-1	U23TAL202/	Language – 1: Tamil / Malayalam/Franch/Hindi	3	6	25	75	100
	U23FRL202/ U23FRL202/ U23HIL202	Malayalalli/Thenell/Tillion					
Part-2	U23ENL202	Language2- English	3	6	25	75	100
	U23PHT203	Core Theory – 2:	5	5	25	75	100
Part-3		Heat, Thermodynamics and Statistical Physics					
	U23PHP204	Core Practical - 2	5	5	25	75	100
	U23PHE22A	SubjectBasedElective – 2 (Allied-2): Mathematics	3	4	25	75	100
Part-4	U23PHS22A	SkillEnhancementCourse-2 : Soft Skills	2	2	25	75	100
	U23PHS23A	SkillEnhancementCourse–3 (ElectronicsinEverydaylife) – Additional Credits - 2	-	-	25	75	100
	U23PHNM21	Naan Mudhalvan Course - 1	2	2			
		TOTAL	23	30			

SEMESTER – III

Part	Course Code	Course Title	Credit	No.of	CIA	ESE	Total
				Hours			Marks
Part - 1	U23TAL303/ U23MAL301/	Language – 1: Tamil / Malayalam/French/Hindi	3	6	25	75	100

MotherTeresaWomen'sUniversity

6|Page

2023

	U23FRL303/						
	U23HIL303						
Part - 2	U23ENL303	Language 2 - English	3	6	25	75	100
	U23PHT305	Core Theory – 3: General Mechanics	5	5	25	75	100
Part - 3		and Classical Mechanics					
	U23PHP306	Core Practical – 3	5	5	25	75	100
	U23PHE33A	Subject Based Elective-III (Allied-	3	4	25	75	100
		II): Chemistry					
	U23PHS34A	Skill Enhancement Course IV	1	2	25	75	100
Part - 4		(Non Major Elective- Physics for					
		everyday life)					
	U23PHNM32	Naan Mudhalvan Course - 2	2	2	25	75	100
TOTAI			22	30			

SEMESTER - IV

Part	Course	Course Title	Credit	No.of	CIA	ESE	Total
	Code			Hours			Marks
Part - 1	U23TAL404	Language – 1: Tamil /	3	6	25	75	100
	/	Malayalam/French/Hindi					
	U23MAL40						
	4/						
	U23FRL404/						
	U23HIL404						
Part - 2	U23ENL404	Language 2 - English	3	6	25	75	100
	U23PHT407	Core Theory – 4: Optics and	5	5	25	75	100
Part - 3		Spectroscopy					
	U23PHP408	Core Practical - 4	5	5	25	75	100
	U23PHE44A	Subject Based Elective - 4 (Allied-	3	3	25	75	100
		II): Chemistry Practical					
	U23PHS45A	Skill Enhancement Course – V (Non	2	2	25	75	100
Part - 4		Major Elective-Astro Physics)					
	U23PHNM43	Naan Mudhalvan Course - 3	2	2	25	75	100
	U23EVS401	EVS	2	2	25	75	100
		TOTAL	25	31			

SEMESTER – V

Part	Course Code	Course Title	Credit	No.of	CIA	ESE	Total
				Hours			Marks
	U23PHT509	Core Theory – 5: Atomic Physics and	4	5	25	75	100
		Lasers					
	U23PHT510	Core Theory – 6: Relativity and	4	5	25	75	100
Part - 3		Quantum Mechanics					
	U23PHP511	Core Practical - 5	4	5	25	75	100
	U23PHT512	Core Theory -7: Digital Electronics and	4	5	25	75	100
		Microprocessor 8085					
	U23PHE55A/	Subject Based Elective 5 –	3	3	25	75	100
	U23PHE55B	A. Communication Physics/					
		B. Energy Physics					
	U23PHE56A/	Subject Based Elective 6 –	3	3	25	75	100
	U23PHE56B	A. Mathematical Physics/					
		B. Numerical methods and C					
		programming					
	U23VAE501	Skill Enhancement Course – VI:	2	2	25	75	100
Part - 4		(Value Education)					
	U23PHI501	Internship	2	-	25	75	100
	U23PHNM54	Naan Mudhalvan Course - 4	2	2	25	75	100
		TOTAL	28	30			

SEMESTER – VI

Part	Course Code	Course Title	Credit	No.of	CIA	ESE	Total
				Hours			Marks
	U23PHT613	Core Theory –8: Nuclear and Particle			25	75	100
		Physics	4	6			
	U23PHT614	Core Theory O: Solid State Physics			25	75	100
Part - 3		Core Theory – 9. Sond State Flysics	4	6			
	U23PHPR61	Project	4	6	25	75	100
	U23PHE67A/	Subject Based Elective 7:	3	5	25	75	100
	U23PHE67B	A. Nano Science and Nano					
		Technology/					
		B. Medical Instrumentation					
	U23PHE68A	Subject Based Elective 8:			25	75	100
	/	A. Material Science/	3	5			
	U23PHE68B	B. Digital Photography					
	U23EAS601	Extension Activity	1	-	25	75	100
Part -4	U23PHNM65	Naan Mudhalvan Course - 5	2	2	25	75	100
		21	30				

DISCIPLINE SPECIFIC ELECTIVES

- 1. COMMUNICATION SYSTEMS
- 2. ENERGY PHYSICS
- 3. MATHEMATICAL PHYSICS
- 4. ADVANCED MATHEMATICAL PHYSICS
- 5. NUMERICAL METHODS AND C PROGRAMMING
- 6. MATERIALS SCIENCE
- 7. LASERS AND FIBER OPTICS
- 8. DIGITAL PHOTOGRAPHY
- 9. NANO SCIENCE
- **10. MEDICAL INSTRUMENTATION**

NON-MAJOR ELECTIVES

- 1. PHYSICS FOR EVERYDAY LIFE
- 2. ASTROPHYSICS
- **3. MEDICAL PHYSICS**
- 4. HOME ELECTRICAL INSTALLATION
- 5. PHYSICS OF MUSIC

B.Sc.Physics-Syllabus

2023

COURSE	FIRSTSEMESTER-CORETHEORY1						
COURSETITLE	PROPERTIESOFMATTERAN	PROPERTIESOFMATTERANDACOUSTICS					
CREDITS	5	5 CourseCode:U23PHT101					
COURSE	Study of the properties of matter leads to information which is of						
OBJECTIVES	practical value to both the physi information about the internal constituent parts of the substance. aresuccessfullyboundtogetabetterin Thesubject.	cist and the engineers.It gives us forces which act between the Students who undergo this course nsightandunderstandingof					

UNITS	COURSEDETAILS
UNIT-I	ELASTICITY: Hooke's law – stress-strain diagram – elastic constants–Poisson'sratio –relationbetweenelasticconstantsand Poisson's ratio – work done in stretching and twisting a wire – twistingcoupleonacylinder –rigiditymodulus bystatictorsion– Torsionalpendulum(withandwithoutmasses)
UNIT-II	BENDING OF BEAMS: cantilever– expression for Bending moment – expression for depression at the loaded end of the cantilever–oscillationsofacantilever –expressionfortimeperiod – experiment to find Young's modulus – non-uniform bending– experiment to determine Young's modulus by Koenig's method – Uniformbending–expressionforelevation–experimentto determine Young's modulus using microscope
UNIT-III	FLUID DYNAMICS: <i>Surface tension</i> : definition – molecular forces– excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surfacetensionbyJaegar'smethod–variationofsurfacetensionwith temperature <i>Viscosity</i> :definition–streamlineandturbulent flow–rateofflowof liquid in a capillary tube – Poiseuille's formula –corrections – terminal velocity and Stoke's formula– variation of viscosity with Temperature

MotherTeresaWomen'sUniversity

9|Page

UNIT-IV	WAVES AND OSCILLATIONS: Simple Harmonic Motion(SHM) – differential equation of SHM – graphical representation ofSHM–compositionoftwoSHMinastraight lineand at right angles –Lissajous'sfigures-free,damped, forcedvibrations–resonanceandSharpness of resonance.Lawsoftransverse vibrationinstrings–sonometer–determinationOfAC frequencyusingsonometer–determinationoffrequencyusingMelde'sstringapparatus
UNIT-V	ACOUSTICSOFBUILDINGSAND ULTRASONICS:Intensityofsound –decibel– loudnessofsound –reverberation– Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings.Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystalmethod–magnetostrictioneffect –applicationofultrasonic waves

B.Sc.Physics-Syllabus

2023

	PROFESSIONALCOMPONENTS:expertlectures-seminars-
UNIT-VI	webinars – industry inputs – social accountability – patriotism
	1. D.S.Mathur,2010,ElementsofPropertiesofMatter,
	S.Chandand Co.
	2. BrijLalandN.Subrahmanyam,2003,PropertiesofMatter,
	S.Chandand Co
TEXTBOOKS	3. D.R.KhannaandR.S.Bedi,1969,TextbookofSound,
	AtmaRamand sons
	4. BrijLalandN.Subrahmanyam,1995,AText BookofSound,
	Second revised edition, Vikas Publishing House.
	5. R.Murugesan, 2012, Properties of Matter, S.ChandandCo.
	1. C.J.Smith, 1960, General Properties of Matter, Orient Longman
	Publishers
REFERENCE	2. H.R.Gulati, 1977, FundamentalofGeneralPropertiesofMatter,
BOOKS	Fifth edition, R. Chand and Co.
	3. A.PFrench, 1973, Vibration and Waves, MITIntroductory
	Physics, Arnold-Heinmann India.
	1. https://www.biolinscientific.com/blog/what-are-surfactants-and-
	how-do-they-work
	2. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.html</u>
	3. <u>https://www.youtube.com/watch?v=gT8Nth9NWPM</u>
WED	4. <u>https://www.youtube.com/watch?v=m4u-SuaSu1sandt=3s</u>
WEB	5. https://www.biolinscientific.com/blog/what-are-surfactants-and-
RESOURCES	how-do-they-work
	6. https://learningtechnologyofficial.com/category/fluid-mechanics-
	<u>lab/</u>
	7. <u>http://www.sound-physics.com/</u>
	8. http://nptel.ac.in/courses/112104026/

METHODOFEVALUATION:

MotherTeresaWomen'sUniversity

ContinuousInternalAssessment	EndSemesterExamination	Total	Grade
25	75	100	

COURSEOUTCOMES:

:

Attheendofthecourse, the student will be able to:

	CO1	Relateelasticbehaviorintermsofthree moduli ofelasticity and workingoftorsionpendulum.	
COURSEOUT	CO2	Ableto appreciateconceptofbendingofbeamsandanalyze Theexpression,quantifyand understandnatureofmaterials.	
COMES	CO3	Explainthesurfacetensionandviscosityoffluidandsupport Theinterestingphenomenaassociatedwithliquidsurface, soap films provide an analogue solution to many engineering	

	problems.
CO4	Analyzesimpleharmonicmotionsmathematicallyandapply them. Understand the concept of resonance and use it to Evaluatethefrequencyofvibration.Setupexperimentto evaluate frequency of ac mains
CO5	Understandtheconceptofacoustics, importance of constructing buildings with good acoustics. Able to apply their knowledge of ultrasonics in real life, especially inmedical field and assimilated if ferent methods of production of ultrasonic waves

MAPPINGWITHPROGRAMOUTCOMES:

Mapcourse outcomes (CO) for each course with program outcomes (PO) in the 3-points cale of STRONG (S), MEDIUM (M) and LOW (L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	М	М	S	М	Μ	S	Μ	S
CO2	Μ	S	S	S	М	М	S	М	S	S
CO3	S	Μ	S	Μ	S	S	Μ	S	S	S
CO4	S	S	S	S	S	Μ	S	Μ	Μ	Μ
CO5	M	Μ	S	S	М	S	S	S	S	М

COURSE	FIRSTSEMESTER -COREPRACTICAL1					
COURSETITLE	PRACTICAL1					
CREDITS	5	CourseCode:U23PHP102				
COURSE	Applyvarious physics concepts to understand Properties of Matter,					
OBJECTIVES	setupexperimentationtoverifytheories, quantify and analyse, able to					
	do error analysis and correlate results					

PropertiesofMatter

MinimumofEightExperimentsfromthelist:

- 1. DeterminationofrigiditymoduluswithoutmassusingTorsionalpendulum.
- 2. DeterminationofrigiditymoduluswithmassesusingTorsionalpendulum.
- 3. Determinationofmomentofinertiaofanirregularbody.
- 4. Verificationofparallelaxestheoremonmomentof inertia.
- 5. Verification of perpendicular axes theorem on moment of inertia.
- 6. DeterminationofmomentofinertiaandgusingBifilarpendulum.
- 7. DeterminationofYoung'smodulusby stretchingofwirewithknown masses.
- 8. VerificationofHook'slawbystretchingofwiremethod.
- 9. DeterminationofYoung'smodulusbyuniformbending-loaddepressiongraph.
- 10. DeterminationofYoung'smodulusbynon-uniformbending-scaleand telescope.
- 11. Determination of Young's modulus by cantilever-load depression graph.

- 12. Determination of Young's modulus by cantilever–oscillation method
- 13. Determination of Young's modulus by Koenig's method-(or unknown load)
- 14. Determination of rigidity modulus by statictorsion.
- 15. Determination of Y,n and K by Searle's double bar method.
- 16. Determination of surface tension and interfacial surface tension by drop weight method.
- 17. Determination of co-efficient of viscosity by Stokes' method-terminal velocity.
- 18. Determination of criticalpres sure for streamline flow.
- 19. Determination of Poisson's ratio of rubber tube.
- 20. Determination of viscosity by Poiseullie's flow method.
- 21. Determination radius of capillarytube by mercury pellet method.
- 22. Determination of using compound pendulum.

ContinuousInternalAssessment	EndSemesterExamination	Total	Grade
25	75	100	

B.Sc.Physics-Syllabus

2023

METHODOFEVALUATION:

ContinuousInter	nalAssessment	EndSemesterExamination	Total	Grade		
25		75	100			
CourseCod	e: U23PHS11A					
	ADVANCED	MATHEMATICALPHYSICS				
LearningObjectiv	e:Thefundamental	lsof matricesandvectorcalculuslearn	tin earlie	r		
coursewillenablestu	ıdentstolearnadva	ncedtopicsandtheorems.Thespecialf	unctions			
Andapplicationsofp	artialdifferentiale	quationswillbe of use in researchata la	aterstage.	•		
UNITS		COURSEDETAILS				
	MATRICES: in	ntroduction – specialtypes of matrice	es – trans	spose –		
	conjugate- conj	njugate transpose– symmetric andanti symmetric –				
UNIT-I	HermitianandskewHermitian-orthogonalandunitary-properties					
	– characteristic	equation – roots and characteristic v	rectors –			
	diagonalization-Cayley-Hamiltontheorem-simpleproblems					

MotherTeresaWomen'sUniversity

	VECTORCALCULUS: Voperator –divergence–secondderivative of		
UNIT-II	vector functions or fields –Laplacianoperator – curl of a vector – line		
	integral – line Integral of a vector field around an infinitesimal		
	rectangle – curl of conservative field – surface integral – volume		
	integral(withoutproblem) – Gauss'sdivergencetheoremandproof–		
	Stroke'stheoremandproof-simple problems.		
	SPECIAL FUNCTIONS: definition –Beta function – Gamma		
	function–evaluationofBetafunction–other formsofBetafunction –		
UNIT-III	evaluationofGammafunction-other formsofGammafunction -		
	RelationbetweenBetaandGammafunctions-simple problems.		
	FROBENIUSMETHODANDSPECIALFUNCTIONS:singular		
	Pointsofsecondorderlinear differentialequations and importance –		
	singularities of Bessels and Laguerreequations, Frobenius method		
UNIT-IV	and applications to differential equations: Legendre and		
	Hermitedifferentialequations-LegendreandHermitepolynomials-		
	Rodriguesformula-generatingfunction-orthogonality		
	PARTIAL DIFFERENTIAL EQUATIONS: solutions to partial		
	differential equations using separation of variables - Laplace's		
	equation in problems of rectangular – cylindrical and spherical		
UNIT-V	symmetry-conducting and dielectric sphere in an external uniform		
	Electricfield–waveequationanditssolutionforvibrationalmodes of a		
	stretched string		
	1. MathematicalPhysics, B.D. Gupta-VikasPublishingHouse, 4th		
TEXTBOOKS	Edition (2006)		
	2. MathematicalPhysics, SatyaPrakash(SultanChand)		
	1. Mathematical		
	MethodsorPhysicists,G.B.Arfken,H.J.Weber,F.E.Harris(2013,7th		
	Edn., Elsevier)		
	2. MathematicalPhysics–H.K.Dass,Dr.RamaVerma(S.Chand		
REFERENCE	Publishing)		
BOOKS	3. AdvancedEngineeringMathematics.ErwinKrevszig(Wilev		
	India)		
	4. MathematicalPhysicsandSpecialRelativity, M.Das. P.K.Jena		
	andB.K. Dash(SrikrishnaPrakashan)		

2023

ELECTIVECOURSES(EC)

U23PHS11	B -ENERGYPHYSICS
LearningObjectiv	ve:Togettheunderstandingoftheconventionalandnon-
Conventionalener	gysources, their conservation and storage systems.
UNITS	COURSEDETAILS
	INTRODUCTION TO ENERGY SOURCES: energy consumption
	as a measure of prosperity – world energy future – energy sourcesand
UNIT-I	their availability – conventional energy sources – non-
	conventionalandrenewableenergysources-comparison-merits
	Anddemerits.
	SOLARENERGY:solarenergyIntroduction-solarconstant -solar
	radiation at the Earth's surface – solar radiation geometry – Solar
UNIT-II	radiation measurements – solar radiation data –solar energy storage
	and storage systems – solar pond – solar cooker –solar water heater
	-solar greenhouse – typesofgreenhouses– solarcells.
	WIND ENERGY: introduction-nature of the wind – basic principle
	ofwindenergyconversion–windenergydataandenergyestimation –
UNIT-III	basic componentsofWind EnergyConversionSystems(WECS) –
	AdvantagesanddisadvantagesofWECS-applications-tidalenergy
	BIOMASS ENERGY: introduction – classification – biomass
UNIT-IV	conversion technologies – photosynthesis – termentation - biogas
	generation-classificationofbiogasplants-anaerobicdigestionfor
	biogas– woodgasification–advantagesanddisadvantages.
	ENERGYSTORAGE: importance of energy storage-batteries-lead
UNIT-V	acid battery-nickel-cadmium battery-fuelcells – types of fuel cells –
	advantages and disadvantages of fuel cells – applications of fuel
	1 C D Dei Ner Convertional Sourcessof Energy Khanne
	Dublishere 2000 4 th Edr
	Publishers, 2009, 4 Edil.
TEXTBOOKS	2. SPSukiisune, JKINayak, Solai Energy, Philiplesol Therman
	2 DDK otheri KDS ingel Beleeh Beien DHU eerning Dut I to
	2011 2 nd Edn
	1 JohnTwidellandTonyWeir RenewableEnergyResources
	Taylor and Francis 2005 2 nd Edn
	2. S A AbbasiandNasemaAbbasi RenewableEnergysourcesand
REFERENCE	their environmental impact. PHI Learning Pvt. Ltd. 2008.
BOOKS	3. M.P.Agarwal.SolarEnergy.S.ChandandCo.LtdNew
	Delhi. 1982
	4. H.C.Jain, Non-Conventional Sources of Energy. Sterling
	Publishers,1986.

ContinuousInternalAssessment	EndSemesterExamination	Total	Grade
25	75	100	

COURSE	FIRSTSEMESTER-FOUNDATIONCOURSE
COURSETITLE	U23PHFC1-INTRODUCTORYPHYSICS
CREDITS	5
COURSE	Tohelpstudentsget anoverviewofPhysicsbefore learningtheir
OBJECTIVES	corecourses. To serve as a bridge between the school curriculum
	Andthe degreeprogramme.

UNITS	COURSE DETAILS					
UNIT-I	vectors,scalars–examplesforscalarsandvectorsfromphysical quantities–addition,subtractionofvectors–resolutionandresultant of vectors – units and dimensions– standard physics constants					
UNIT-II	Differenttypesofforces–gravitational,electrostatic,magnetic, electromagnetic, nuclear –mechanicalforces like, centripetal, centrifugal, friction,tension,cohesive,adhesive forces					
UNIT-III	different formsofenergy–conservationlawsofmomentum, energy –typesofcollisions–angular momentum–alternateenergysources– rea life examples					
UNIT-IV	types of motion– linear, projectile, circular, angular, simple harmonic motions–satellite motion–bankingofa curvedroads– stream line and turbulent motions – wave motion –comparison of lightandsoundwaves–free,forced,dampedoscillations					
UNIT-V	surface tension – shape of liquid drop –angle ofcontact –viscosity – lubricants – capillary flow – diffusion – real life examples– properties and types of materials indaily use-conductors, insulators –thermal and electric					
UNIT-VI	PROFESSIONALCOMPONENTS: expertlectures-seminars- webinars – industry inputs – social accountability – patriotism					
TEXTBOOKS	 D.S.Mathur,2010,ElementsofPropertiesofMatter, S.Chandand Co BrijLalandN. Subrahmanyam, 2003,PropertiesofMatter, S.ChandandCo. 					
REFERENCE BOOKS	1. H.R.Gulati,1977,FundamentalofGeneralProperties ofMatter, Fifthedition, S.ChandandCo.					
WEB RESOURCES	 <u>http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.htmlhttps://science.nasa.gov/ems/</u> <u>https://eesc.columbia.edu/courses/ees/climate/lectures/radiation_hays/</u> 					

B.Sc.Physics-Syllabus

2023

ContinuousInternalAssessment	EndSemesterExamination	Total	Grade
25	75	100	

COURSEOUTCOMES:

Attheendofthecourse, the student will be able to:

	CO1	Applyconceptofvectorstounderstand conceptsofPhysics Andsolveproblems
	CO2	Appreciated ifferent forces present in Nature while learning About phenomenare lated to these different forces.
COURSEOUT COMES	CO3	Quantifyenergyindifferentprocessandrelatemomentum, velocity and energy
	CO4	Differentiatedifferenttypesofmotionstheywould encounter in various courses and understand their basis
	CO5	Relatevariousproperties of matter with their behavior and connect them with different physical parameters involved.

MAPPINGWITHPROGRAMOUTCOMES:

Mapcourse outcomes (CO) for each course with program outcomes (PO) in the 3-points scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	2	3	3	2	2	2
CO3	3	3	3	2	3	3	3	2	3	2
CO4	3	3	3	3	3	3	3	2	2	2
CO5	3	2	3	3	3	3	3	2	2	3

2023

SECONDSEMESTER

COURSE	SECOND SEMESTER-CORE-3THEORY
COURSETITLE	U23PHT203-HEAT, THERMODYNAMICS and
	STATISTICALPHYSICS
CREDITS	5
COURSE	The course focuses to understand a basic in conversion of
OBJECTIVES	temperature in Celsius, Kelvin and Fahrenheit scales. Practical exhibition and explanation oftransmission ofheat in good and bad conductor.Relate he lawsofthermodynamics, entropyineveryday life and explore the knowledge of statistical mechanics and its
	Relation

UNITS	COURSEDETAILS			
	CALORIMETRY: specific heat capacity– specific heat capacity			
	of gases C_P and C_V – Meyer's relation – Joly's method for			
	determination of C_{V} - Regnault's method for determination of			
UNIT-I	CPLOWTEMPERATUREPHYSICS: Joule-Kelvin effect –			
	porous plug experiment – Joule-Thomson effect –			
	Boyletemperature – temperatureofinversion– liquefactionofgas			
	byLinde'sProcess –			
	A diabaticdemagneStisation.			
	THERMODYNAMICS-I: zeroth law and first law of			
thermodynamics – P-V diagram – heat engine –efficience				
	engine-Carnot'sengine,construction,workingandefficiencyof			
	Petrolengine and dieselengines –comparison of engines.			
	THERMODYNAMICS-II: second law of thermodynamics –			
	entropy of an ideal gas – entropy change in reversible and			
	irreversibleprocesses-T-Sdiagram-thermodynamicalscaleof			
UNIT-III	temperature – Maxwell's thermodynamical relations – Clasius-			
	Clapeyron's equation (first latent heat equation) – third law of			
	thermodynamics-unattainabilityofabsolutezero-heat death.			
	HEATTRANSFER: modes of heattransfer: conduction, convection			
	and radiation.			
	<i>Conduction</i> : thermal conductivity – determination of thermal			
	conductivity of a good conductor by Forbe's method –			
LINIT IV	determinationofthermalconductivityofabad conductorbyLee's disc			
	method.			
	Radiation:blackbodyradiation(Ferry'smethod)–distributionof			
	energy in black bodyradiation – Wien's law and Rayleigh Jean's			
	law –Planck's law of radiation – Stefan's law – deduction of			
	Newton'slawofcoolingfromStefan'slaw.			

2023

	STATISTICALMECHANICS:definitionofphase-space-micro				
UNIT-V	and macro states – ensembles –different types of ensembles –				
	classical and quantum Statistics – Maxwell-Boltzmann statistics –				
	expression for distribution function – Bose-Einstein statistics –				
	expression for distribution function – Fermi-Dirac statistics –				
	expression for distribution function – comparison of three statistics.				
	PROFESSIONALCOMPONENTS: expert lectures-seminars-				
UNII-VI	webinars-industryinputs- socialaccountability- patriotism				
	1. BrijlalandN.Subramaniam,2000,HeatandThermodynamics,				
	S.Chandand Co.				
	2. NarayanamoorthyandKrishnaRao,1969,Heat,TriveniPublishers,				
	Chennai.				
	3. V.R.KhannaandR.S.Bedi,19981 st Edition,TextbookofSound,				
TEXTBOOKS	Kedharnaath Publish and Co, Meerut				
	4. Brijlal and N. Subramanyam, 2001, Waves and				
	Oscillations. VikasPublishingHouse. NewDelhi.				
	5. Ghosh, 1996, TextBook of Sound, S. Chandand Co.				
	6. R.MurugeshanandKiruthigaSivaprasath,ThermalPhysics,				
	S.Chandand Co.				
	1. J.B.RajamandC.L.Arora,1976,HeatandThermodynamics,8 th				
	edition, S.Chandand Co. Ltd.				
	2. D.S.Mathur, Heatand Thermodynamics, Sultan Chandand				
	Sons.				
REFERENCE	3. Gupta.Kumar.Sharma,2013.StatisticalMechanics,26th				
BOOKS	Edition, S. Chand and Co.				
	4. Resnick, Halliday and Walker, 2010, Fundamental sof Physics,				
	6th Edition.				
	5. Sears, Zemansky, Hugh D. Young, Roger A. Freedman, 2021				
	UniversityPhysicswithModernPhysics15thEdition,Pearson.				
	1. https://youtu.be/M 5KYncYNyc				
	2. https://www.youtube.com/watch?v=4M72kQulGKkandvl=en				
	3. Lecture1:ThermodynamicsPart				
WEB	1 VideoLectures StatisticalMechanicsI:				
RESOURCES	StatisticalMechanicsofParticles Physics MITOpenCourseWare				
	4. http://www.freebookcentre.net/Physics/Physics-Books-				
	<u>Online.html</u>				

ContinuousInternalAssessment	EndSemesterExamination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

B.Sc.Physics-Syllabus

2023

CO1	Acquires knowledge on how to distinguish between
	temperature and heat. Introduce him/her to the field of
	thermometry and explain practical measurements of high
	temperature as well as low temperature physics. Student
	identifiestherelationshipbetweenheatcapacity, specificheat
	capacity.ThestudyofLowtemperaturePhysicssetsthebasis for
	the students to understand cryogenics, superconductivity,
	SuperfluidityandCondensed Matter Physics
CO2	DerivetheefficiencyofCarnot'sengine.Discussthe
	Implicationsofthe lawsofThermodynamicsindieseland petrol
	engines
CO3	Abletoanalyzeperformanceofthermodynamicsystemsviz
	efficiencybyproblems.Getsaninsightintothermodynamic
	properties like enthalpy, entropy
CO4	Studytheprocessofthermal conductivity and applyit to good and
	bad conductors. Quantify different parameters related to
	heat, relate them with various physical parameters and analyse them
CO5	Interpret classical statistics concepts such as phase space,
	ensemble, Maxwell-Boltzmann distribution law. Develop the
	statisticalinterpretationofBose-EinsteinandFermi-Dirac.
	Applytoquantumparticlessuchas photonandelectron
	CO1 CO2 CO3 CO4

MAPPINGWITHPROGRAMOUTCOMES:

 $\label{eq:constraint} Mapcourseoutcomes(CO) for each course with program outcomes(PO) in the 3-points cale of STRONG(S), MEDIUM(M) and LOW(L).$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	Μ	S	S	Μ	Μ	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	S	М	S	S	S	Μ	Μ	S	М

COURSE	SECONDSEMESTER- CORE-4-PRACTICAL2
COURSETITLE	U23PHP204- PRACTICAL2
CREDITS	5

COURSE OBJECTIVES	Applytheirknowledgegainedabouttheconceptofheat and sound waves, resonance, calculate frequency of ac mains set up experimentation to verify theories, quantify and analyse, able to do Error analysis and correlate results			
HEAT, OSCILLATIONS, WAVES and SOUND				

MinimumofEightExperimentsfromthelist:

- 1. Determination of specific heat by cooling–graphical method.
- 2. Determination of thermal conductivity of good conductor by Searle's method.
- 3. Determination of thermal conductivity of bad conductor by Lee's disc method.
- 4. Determination of thermal conductivity of bad conductor by Charlaton's method.
- 5. Determination of specific heat capacity of solid.
- 6. Determination of specific heat of liquid by Joule's electrical heating method (applying radiation correction by Barton's correction/graphical method),
- 7. Determination of Latentheat of a vaporization of a liquid.
- 8. Determination of Stefan's constant for Black body radiation.
- 9. Verification of Stefan's-Boltzmans law.
- 10. Determination of thermal conductivity of rubber tube.
- 11. Helmholtzresonator.
- 12. Velocity of sound through a wire using Sonometer.
- 13. Determination of velocity of sound using Kunds tube.
- 14. Determinationoffrequencyofan electrically maintained tuning for k
- 15. To verify the laws of transverse vibration usings onometer.
- 16. To verify the laws of transverse vibration using Melde's apparatus.
- 17. To compare the mass perunitlength of two strings using Melde's apparatus.
- 18. Frequency of AC by usings onometer.

ContinuousInternalAssessment	EndSemesterExamination	Total	Grade
25	75	100	

2023

U23PHS23-ELECTRONICSINEVERDAYLIFE

2Hours/2Credits

Objective:Tomakenonphysicsstudentsunderstandbasicelectronicconceptsanditsapplic ations in dailylife.

UNITI FNDAMENTALS

Electrical and Electronic symbols – Resistors - Capacitors – Resistance wale – Capacitorwale–Electricalquantities–Electricalformulas–Magnetism–Meters– FusewireTransistors – Integratedchips.

UNITHELECTRICALAPPLIANCES

Switchboard – Main box – Metalcircular breakers (MCB) – AC – DC currents– Twophase – Three phase electrical connections – generators – uninterrupted power supply (UPS) –stabilizer– voltageregulators – Electrical devices–Iron box– Fan

UNITIHELECTRONICHOMEAPPLIANCES

Radio–Audiotaperveaulem,speaker–televisions–VCR–CDPlayer–DVD– calculators–Computers–Blockdiagramofacomputer–Inputdevice–Memory device–control unit–Arithmeticandlogicunit–outputdevice–microprocessor– RAM –ROM –scanner– printer– Digital camera–LCD Projectors – Displaydevices

UNITIVCOMMUNICATIONELECTRONICS

Principlesofopticalfibercables(OFC) –Telephone–MobilePhones– wireless phone –Antenna–Internet –Intranet

UNITVSAFETYMECHANISM

Handling electrical appliances – power saving methods – hazards prevention methods –protectionofHi-Fi electronic devices.

BooksforStudyandreference:

1. S.S.Kamble-ElectronicsandMathematicsDataBook-AlliedPublishersLtd-1997

2. WilliamDavidCooper,ElectronicandInstrumentationandMeasurementTechnique(2ndEditi on),1978.

COURSE	THIRD SEMESTER – COREU23PHT305
COURSETITLE	GENERAL MECHANICS AND CLASSICAL MECHANICS
CREDITS	4
COURSE	This course allows the students: To have a basic understanding of
OBJECTIVES	the laws and principles of mechanics; To apply the concepts of
	forces existing in the system; To understand the forces of physics in
	everyday life; To visualize conservation laws; To apply Lagrangian
	equation to solve complex problems.
UNIIS	COURSEDETAILS
	motion – frictional force – motion of aparticlein a
	uniformgravitational field – types of everyday forces in Physics.
TINIT T	Gravitation: Classical theory of gravitation-Kepler's laws,
UNII-1	Newton's law of gravitation - Determination of G by Boy's
	method – Earth-moon system – weightlessness – earth satellites –
	parking orbit – earth density – mass of the Sun – gravitational
	potential – velocity of escape.
	CONSERVATION LAWS OF LINEAR AND ANGULAR
	MOMENTUM: conservation of linear and angular momentum – Internal forces and momentum conservation center of mass
	examples – general elastic collision of particles of different masses
UNIT-II	- system with variable mass - examples - conservation of angular
	momentum – torque due to internal forces – torque due to gravity –
	angular momentum about center of mass – proton scatteringby
	heavy nucleus.
	CONSERVATION LAWS OF ENERGY: Introduction -
	significance of conservation laws – law of conservation of
	energyconcepts of work- power – energy – conservative forces –
UNIT-III	potential energy and conservation of energy ingravitational and
	conservation of energy
	RIGID RODY DYNAMICS: Translational and rotational motion
	– angular momentum – moment of inertia – general theorems of
	moment of inertia – examples – rotation about fixed axis – kinetic
UNIT-IV	energy of rotation – examples – body rollingalong a plane surface –
	body rolling down an inclined plane – gyroscopic precision –
	gyrostatic applications.
	LAGRANGIAN MECHANICS: generalized coordinates –
UNIT-V	degrees of freedom – constraints - principle of virtual work and D'
	Alembert's Principle –Lagrange's equation from D' Alembert's
	principle – application –simple pendulum – Atwood's machine.

	1. J.C.Upadhyaya, 2019, Classical Mechanics, Himalaya
	Publishing house, Mumbai.
	2. P.DuraiPandian, LaxmiDuraiPandian,
	MuthamizhJayapragasam, 2005, Mechanics, 6 th revised edition,
	S.Chand& Co.
	3. D. S. Mathur & P. S. Hemne, 2000, Mechanics, Revised
IEXI BOOKS	Edition, S.Chand& Co.
	4. Narayanamurthi, M.&Nagarathnam. N, 1998, Dynamics. The
	National Publishing, Chennai.
	5. Narayanamurthi, M. and Nagarathnam, N, 1982, Statics,
	Hydrostatics and Hydrodynamics, The National Publishers,
	Chennai.
	1. Goldstein Herbert, 1980, Classical Mechanics. U.S.A: Addison
	and Wesely.
REFERENCE	2. Halliday, David & Robert, Resnick, 1995, Physics Vol.I. New
BOOKS	Age, International, Chennai.
	3. Halliday, David Robert Resnick and Walker Jearl, 2001,
	Fundamentals of Physics, John Wiley, New Delhi
	1. <u>https://youtu.be/X4_K-XLUIB4</u>
	2. https://nptel.ac.in/courses/115103115
	3. https://www.youtube.com/watch?v=p075LPq3Eas
WEBLINKS	4. <u>https://www.youtube.com/watch?v=mH_pS6fruyg</u>
	5. <u>https://onlinecourses.nptel.ac.in/noc22_me96/preview</u>
	6. <u>https://www.youtube.com/watch?v=tdkFc88Fw-M</u>
	7. <u>https://onlinecourses.nptel.ac.in/noc21_me70/preview</u>

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

	CO1	Understand the Newton's Law of motion, understand genera theory of relativity, Kepler's laws and Realize the basic principles behind planetary motion							
	CO2	Acquire the knowledge on the conservation laws							
COURSEOU TCOMESCO3Apply conservationlaw and calculate energy systems, understand and differentiate conservative conservative forces									
	Gain knowledge on rigid body dynamics and solve problems based on this concept								
	CO5	Appreciate Lagrangian system of mechanics, apply D' Alemberts principle							

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	Μ	S	S
CO2	S	S	S	М	S	Μ	S	S	S	М
CO3	S	S	S	S	S	S	Μ	S	М	S
CO4	М	S	S	S	М	S	S	М	S	S
CO5	S	S	М	S	S	Μ	S	S	S	М

COURSE	THIRD SEMESTER – CORE				
COURSETITLE	CORE PRACTICALSU23PHP306				
CREDITS	4				
COURSE	Construct circuits to learn about the concept of electricity, current,				
OBJECTIVES	resistance in the path of current, different parameters that affect a				
	circuit. Set up experiments, observe, analyse and assimilate the concept				
ELECTRICITY (any eight experiments)					

- 1. Calibration of low range and high range voltmeter using potentiometer
- 2. Calibration of ammeter using potentiometer.
- 3. Measurement of low resistances using potentiometer.
- 4. Determination of field along the axis of a current carrying circular coil.
- 5. Determination of earth's magnetic field using field along axis of current carrying coil.
- 6. Determination of specific resistance of the material of the wire usingPO box.
- 7. Determination of resistance and specific resistance using Carey Foster's bridge.
- 8. Determination of internal resistance of a cell using potentiometer.
- 9. Determination of specific conductance of an electrolyte.
- 10. Determination of EMF of thermo couple using potentiometer
- 11. Determination of capacitance using De-sauty's bridge and B.G./Spot galvanometer/head phone.
- 12. Determination of figure of merit of BG or spot galvanometer.
- 13. Comparison of EMF of two cells using BG.
- 14. Comparison of capacitance using BG.

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

NON MAJOR ELECTIVES (NME)

U23PHS34PHYSICS FOR EVERYDAY LIFE		
Learning Objective: To know where all physics principles have been put to use in daily		
life and appreciate the concepts with a better understanding also to know about Indian		
scientists who have	ve made significant contributions to Physics	
UNITS	COURSE DETAILS	
LINIT I	MECHANICAL OBJECTS: spring scales – bouncing balls –roller	
UNII-I	coasters – bicycles –rockets and space travel.	
	OPTICAL INSTRUMENTS AND LASER: vision corrective lenses	
UNIT-II	– polaroid glasses – UV protective glass – polaroid camera – colour	
	photography – holography and laser.	
	PHYSICS OF HOME APPLIANCES: bulb - fan - hair drier -	
UNIT-III	television – air conditioners – microwave ovens – vacuum cleaners	
	SOLAR ENERGY: Solar constant – General applications of solar	
UNIT-IV	energy – Solar water heaters – Solar Photo – voltaic cells – General	
	applications of solar cells.	
	INDIAN PHYSICIST AND THEIR CONTRIBUTIONS:	
TINIT'E X7	C.V.Raman, HomiJehangirBhabha, Vikram Sarabhai, Subrahmanyan	
UNII-V	Chandrasekhar, Venkatraman Ramakrishnan, Dr. APJ Abdul Kalam	
	and their contribution to science and technology.	
	1. The Physics in our Daily Lives, Umme Ammara,	
TEXT BOOKS	Gugucool Publishing, Hyderabad, 2019.	
	2 For the love of physics Walter I awin Free Press New	
	Z. FOI the love of physics, watch Lawin, free fress, New Vork 2011	
	101K, 2011.	

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	FOURTH SEMESTER - CORE
COURSETITLE	OPTICS AND SPECTROSCOPYU23PHT407
CREDITS	4
COURSE OBJECTIVES	To provide an in-depth understanding of the basics of various phenomena in geometrical and wave optics; To explain the behavior of light in different mediums; To understand the differences in the important phenomena namely interference, diffraction and Polarization and apply the knowledge in day to day life; To understand the design of optical systems and methods to minims aberrations; To solve problems in optics by selecting the appropriate equations and performing numerical or analytical calculations.

COURSEDETAILS
LENS AND PRISMS: Fermat's principle of least time – postulates
of geometrical optics – thick and thin lenses – focal length, critical thickness, power and cardinal points of a thick lang, parrow angled
nickness, power and cardinal points of a unick lens – narrow angled
prisms. Lens: lens makers formula (no derivation) $-$ aberrations: spherical
aberration chromaticaberrations come and astigmatism curvature
of the field – distortion – chromatic aberrations methods.
<i>Prism</i> : dispersion, deviation, aberrations - applications rainbows and halos, constant deviation spectroscope.
<i>Eyepieces</i> : advantage of an eyepiece over a simple lens – Huygen's
and Ramsden's eyepieces, construction and working -merits and
demerits of the eyepiece.
Resolving power: Rayleigh's criterion for resolution – limit of
resolution for the eye – resolving power of, (i) Prism (ii) grating (iii)
telescope
INTERFERENCE: Division of wave front, Freshel's biprism –
films due to (i) reflected light (ii) transmitted light – colours of thin
films applications – air wedge – Newton's rings.
<i>Interferometers</i> : Michelson's interferometer – applications, (i)
determination of the wavelength of a monochromatic source of light,
(ii) determination of the wavelength and separation D_1 and D_2 lines
of sodium light, (iii) determination of a thickness of a mica sheet.
DIFFRACTION: Fresnel's assumptions – zone plate – action of
zone plate for an incident spherical wave front – differences between
a zone plate and a convex lens – Fresnel type of diffraction –
minimum intensities diffraction due to a parrow slit. Fraunhofer
type of diffraction Fraunhofer diffraction at a single slit plane
diffraction grating experiment to determine wavelengths – width of
principal maxima.

	POLARISATION: optical activity – optically active crystals –
UNIT-IV	polarizer and analyser-double refraction – optic axis, principal plane – Huygens's explanation of double refraction in uniaxial crystals – polaroids and applications – circularlyand elliptically polarized light –quarter wave plate – half wave plate – production and detection of circularly and elliptically polarized lights – Fresnel's explanation – specific rotation – Laurent half shade polarimeter – experiment to determine specific rotatory power.
UNIT-V	SPECTROSCOPY: Infra-red spectroscopy near infra-red and far infra-red – properties –origin of IR spectra – IR spectrophotometer – applications interpretation of IR spectra – CH, CO, CN bending and stretching vibrational modes only – scattering of light – Raman effect –classical theory –quantum theory –mutual exclusion principle – Raman spectrometer- characteristics of Raman lines –applications – ultraviolet and visible spectroscopy –properties – spectrophotometer.
TEXT BOOKS	 Subramaniam. N&Brijlal, 2014,Optics, 25th edition,S.Chand &Co. S.L.Gupta,V.Kumar& R.C.Sharma,1997,Elements of Spectroscopy, 13th Edition, Pragati Prakashan, Meerut. G.Aruldhass,2000,MolecularStructure and Spectroscopy,II edition.PHIPvt Ltd, New Delhi. P.R.Sasikumar, 2012, Photonics, PHIPvt Ltd, New Delhi. K.Rajagopal, 2008, Engineering Physics, PHIPvt Ltd, New Delhi. V.Rajendran, 2012, Engineering Physics, Tata McGraw Hill.
REFERENCE BOOKS	 Agarwal B.S, 2011,Optics, KedernathRamnath Publishers, Meerut. Sathyaprakash, 1990,Optics,VIIedition, RatanPrakashanMandhir, New Delhi. C.N.Banewell, 2006, Introduction to Molecular Spectroscopy,IVedition,TMH Publishing Co,New Delhi. 4. AjoyGhatak, 2009,Optics, 4thedition, PHIPvt Ltd, New Delhi. Singh &Agarwal,2002,Optics and Atomic Physics, 9thedition, PragatiPrakashan Meerut. D.Halliday,R.Resnick and J. Walker, 2001, Fundamentals of Physics,6th edition, Willey, New York. JenkinsA.Francis & White, 2011, Fundamentals of Optics, 4th edition McGraw Hill Inc. NewDelhi
WEBLINKS	 https://science.nasa.gov/ems/ https://www.youtube.com/watch?v=tL3rNc1G0qQ&list=RDCM UCzwo7UlGkb-8Pr6svxWo-LA&start_radio=1&t=2472 https://science.nasa.gov/ems/ https://www.youtube.com/watch?v=tL3rNc1G0qQ&list=RDCM UCzwo7UlGkb-8Pr6svxWo-LA&start_radio=1&t=2472 https://imagine.gsfc.nasa.gov/educators/gammaraybursts/imagine/ index.html http://www.thephysicsmill.com/2014/03/23/sky-blue-lord- rayleigh-sir-raman-scattering/ http://www.thephysicsmill.com/2014/03/23/sky-blue-lord- rayleigh-sir-raman-scattering/

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

	CO1	Outline basic knowledge of methods of rectifying different
		defects in lenses, articulate technological applications of
		eyepieces
	CO2	Discuss the principle of superposition of wave, use these ideas to
		understand the wave nature of light through working of
		interferometer
COURSEOU	CO3	Extend the knowledge about nature of light through diffraction
TCOMES		techniques; apply mathematical principles to analyse the optical
		instruments
	CO4	Interpret basic formulation of polarization and gain knowledge
		about polarimeter, appraise its usage in industries
	CO5	Relate the principles of optics to various fields of IR, Raman and
		UV spectroscopy and understand their instrumentation and
		application in industries

MAPPING WITH PROGRAM OUT COMES:

 $\label{eq:main_second} Mapcourse outcomes (CO) for each course with program outcomes (PO) in the 3-points cale of STRONG(S), MEDIUM(M) and LOW(L).$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	Μ	S	М	М	М	S	S	М	М
CO2	Μ	S	М	S	М	S	Μ	М	S	S
CO3	S	Μ	S	S	S	М	S	S	М	М
CO4	S	Μ	S	М	М	S	Μ	М	S	М
CO5	S	Μ	S	М	S	S	Μ	S	S	S

COURSE	FOURTH SEMESTER – CORE
COURSETITLE	CORE PRACTICALSU23PHP408
CREDITS	4

COURSE	Demonstrate various optical phenomena principles, working, apply with
OBJECTIVES	various materials and interpret the results.

LIGHT(any eight experiments)

- 1. Determination of refractive index of prism using spectrometer.
- 2. Determination of refractive index of liquid using hollow prism and spectrometer
- 3. Determination of dispersive power of a prism.
- 4. Determination of radius of curvature of lens by forming Newton's rings.
- 5. Determination of thickness of a wire using air wedge.
- 6. Determination of Cauchy's Constants.
- 7. Determination of resolving power of grating
- 8. Determination of resolving power of telescope
- 9. Comparison of intensities using Lummer Brodhum Photometer.
- 10. Determination of range of motion using Searlesgoniometer.
- 11. Verification of Newton's formula for a lens separated by a distance.
- 12. Determination of refractive index of a given liquid by forming liquid lens
- 13. Determination of refractive index using Laser.
- 14. Determination of wavelengths, particle size using Laser/Monochromatic source.
- 15. Determination of resolving power of Diffraction grating using Laser
- 16. Determine the thickness wire using Laser.

METHOD OF EVALUATION:

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

ASTROPHYSICS

Learning Objective: This course intends to introduce principles of astrophysics describing

the science of formation and evolution of stars and interpretation of various heavenly phenomena and provide an understanding of the physical nature of celestialbodies along with the instrumentation and techniques used in astronomical research

UNITS	COURSE DETAILS
	TELESCOPES: Optical telescopes – magnifying power, brightness,
UNIT-I	resolving power and f/a ratio – types of reflecting and refracting
	telescopes – detectors and image processing – radio telescopes –
	Hubble space telescope.
	SOLAR SYSTEM: Bode's law of planetary distances – meteors,
UNIT-II	meteorites, comets, asteroids – Kuiper belt – Oort cloud – detection of
	gravitational waves – recent advances in astrophysics.
	ECLIPSES: types of eclipses – solar eclipse – total and partial solar
	eclipse – lunar eclipse – total and partial lunar eclipse – transits.
UNIT-III	THE SUN: Physical and orbital data – solar atmosphere – photosphere
	– chromosphere – solar corona – prominences – sunspots – 11year
	solar cycle – solar flares.
	STELLAR EVOLUTION: H-R diagram – birth & death of low mass,
	intermediate mass and massive stars – Chandrasekar limit – white
UNIT-IV	dwarfs – neutron stars – pulsars – black holes – supernovae.
	GALAXIES: classification of galaxies – galaxy clusters –interactions
	of galaxies, dark matter and super clusters – evolving universe.
	ACTIVITIES IN ASTROPHYSICS:
	(1) Basic construction of telescope
	(ii) Develop models to demonstrate eclipses/planetary motion
UNIT-V	(iii) Night sky observation
	(iv) Conduct case study pertaining to any topic in this paper
	(v) Visit to any one of the National Observatories
	Any three activities to be done compulsorily.
	1. BaidyanathBasu, (2001). <u>An introduction to Astrophysics</u> , Second
TEXT BOOKS	printing, Prenuce – Han of India (P) Lid, New Denni 2. K.S. Krishnessyamy, (2002) Astronhysics – a modern perspective
	2. K.S.Krishnaswamy, (2002), <u>Astrophysics – a modern perspective</u> , Naw Age International (D) Ltd. Naw Dalhi
	New Age International (P) Ltd, New Denn.
	5. Shylaja, D.S. & Viaunusuuan, H.K., (1999), Echpse: A Celestial Shedow Play Orient PlackSwar
	<u>Shauow Flay</u> , Ohem DiackSwafi,

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	FIFTH SEMESTER - CORE
COURSE TITLE	ATOMIC PHYSICS AND LASERSU23PHT509
CREDITS	4

COURSE	o study about electric charges, their properties through experiments;
OBJECTIVES	To gain knowledge on photoelectric effect; To solve problems
	based on Einstein's photoelectric equation; To make students
	understand the development of atom models, quantum numbers,
	coupling schemes and analysis of magnetic moments of an
	electrons; To gain knowledge on excitation and ionization
	potentials, splitting of spectral lines in magnetic and electric fields;
	To understand the principle, production and applications of lasers.

UNITS	COURSE DETAILS
	THE ELECTRON AND POSITIVE RAYS: e/m of electronby
	Dunnington's method -charge of electron by Millikan's oil drop
	method – properties of positive rays –e/m of positive rays by
UNII-I	Thomson's parabola method (problems calculation of e/m ratio of
	positive rays)-mass spectrographs and uses- Bainbridge and
	Dempster's mass spectrographs
	PHOTOELECTRIC EFFECT: Photoelectric emission -
	Leonard's experiment – Richardson and Compton experiment –
	laws of photoelectric emission – Einstein's photoelectric equation
UNIT-II	(problems using Einstein's photoelectric equation) –experimental
	verification by Millikan's method -photoelectric cell- photo
	emissive cell – photovoltaic cell – photo conducting cell –
	applications of photoelectric cells –photomultiplier.
	ATOMIC STRUCTURE: Sommerfield's relativistic atom model
	-vector atom model -various quantum numbers - L-S and J-J
	coupling – Pauli's exclusion principle –magnetic dipole moment of
UNIT-III	an electron due to orbital and spin motion – Bohr magnetron - Stern
	and Gerlach experiment – Lande 'g' factor.
	SPLITTING OF SPECTRAL LINES: excitation, ionisation and
	critical potentials – Davis and Goucher's method – optical spectra –
	spectral notation and selection rules – fine structure of sodium D-
	line – Zeeman effect – experimental arrangement and classical and
UNIT-IV	quantum theory of normal Zeeman effect – Larmor's theorem –
	anomalous Zeeman effect –explanation of splitting of D_1 and
	D2lines of sodium – Paschen Back effect - Stark effect (Oualitative
	only).
	LASERS: general principles of lasers – properties of lasers action
	– spontaneous and stimulated emission – population inversion –
UNIT-V	optical pumping – He-Ne laser (principle and working) –
	semiconductor laser –laser applications–holography.
	1. R. Murugesan, Modern Physics, S. Chand & Co. (All units)
	(Units I&II-Problems)
TEXT BOOKS	2. Briilal & N. Subrahmanyam, Atomic & Nuclear Physics, S.
	Chand & Co. (All units)
	3. J. B. Rajam. Modern Physics, S. Chand & Co.
	4. Sehgal&Chopra, Modern Physics, Sultan Chand, New Delhi
	5. Avadhahnulu, An Introduction to Lasers - Theory and
	Applications, M.N., S.Chand& Co., New Delhi, 2001.

	1. Perspective of Modern Physics, Arthur Beiser, McGraw Hill.		
REFERENCE	2. Modern Physics, S. Ramamoorthy, National Publishing & Co.		
BOOKS	3. Laser and Non-Linear Optics by B.B.Laud, Wiley Easter		
	Ltd.,NewYork,1985.		
	1. http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html		
	2. https://makingphysicsfun.files.wordpress.com/2015/01/photoelect		
	ric-effect.pptx		
WEBLINKS	3. https://www.khanacademy.org/science/physics/quantum-		
	physics/in-in-nuclei/v/types-of-decay		
	4. https://www.khanacademy.org/science/in-in-class-12th-physics-		
	india/nuclei		

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

	CO1	List the properties of electrons and positive rays,				
		definespecific charge of positive rays, know different				
mass spectrographs.						
	Outlinephotoelectric effect and the terms related to it,					
		Statelaws of photoelectric emission, Explain experiments				
		and applications of photo electric effect, Solve problems				
COURSEO		based on photoelectric equation.				
UTCOMES	UTCOMES CO3 Explain different atom models, Describedifferent quar					
	numbers and different coupling schemes.					
	CO4	Differentiate between excitation and ionization potentials,				
		Explain Davis and Goucher's experiment, Applyselection				
		rule, Analyse Paschen-Back effect, Compare Zeeman and				
		Stark effect.				
	CO5	Understand the condition for production of laser,				
		Appreciate various properties and applications of lasers.				

MAPPING WITH PROGRAM OUT COMES:

 $\label{eq:mapping} Mapcourse outcomes (\textbf{CO}) for each course with program outcomes (\textbf{PO}) in the 3-point scale of STRONG(\textbf{S}), MEDIUM(\textbf{M}) and LOW(\textbf{L}).$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	Μ	S	М
CO2	S	S	М	S	Μ	S	S	Μ	М	М
CO3	S	S	S	М	S	S	Μ	S	S	S
CO4	М	S	S	S	S	Μ	S	М	М	М
CO5	S	Μ	S	S	Μ	S	S	Μ	М	S

COURSE	FIFTH SEMESTER – CORE X
COURSETITLE	RELATIVITY AND QUANTUM MECHANICS U23PHT510
CREDITS	4
COURSE OBJECTIVES	To understand the theory of relativity, its postulates and the consequences. To learn the importance of transformation equations and also to differentiate between special and general theory of relativity. To interpret the wave theory of matter with various theoretical and experimental evidences. To derive and use Schrodinger's wave equation and also learn about various operators. To solve Schrodinger's wave equation for simple problems and analyses to understand the solutions.

UNITS	COURSE DETAILS
UNIT-I	SPECIAL THEORY OF RELATIVITY: Michelson-Morley experiment–frames of reference – Galilean Relativity – postulates of special theory of relativity – Lorentz transformation – consequences – time dilation–concept of simultaneity – Doppler effect – length contraction–variation of mass with velocity – Einstein's mass-energy relation– relativistic momentum – energy relation
UNIT-II	TRANSFORMATION RELATIONS: Transformation of velocity, mass, energy and momentum – four vector – invariance under transformation – Lorentz transformation and velocity addition equations in terms of hyperbolic functions. GENERAL THEORY OF RELATIVITY: Inertial and Gravitational mass – Principle of equivalence – Experimental evidences for General theory of Relativity

	PHOTONS AND MATTER WAVES:Difficulties of classical
	physics and origin of quantum theory –black body radiation –
	Planck's law – Einstein's photoelectric equation –Compton effect –
UNIT-III	pair production – De Broglie waves – phase velocity and group
	velocity– Davisson and Germer's experiment –uncertainty
	principle – consequences –illustration of Gamma ray microscope.
	OPERATORS AND SCHRÖDINGER EQUATION: postulates
	of quantum mechanics – Wave function and its interpretation –
	Schrödinger's equation – linear operators – Eigenvalue –
	Hermitian operator – properties of Hermitian operator – observable
UNIT-IV	– operators for position linear Momentum angular momentum
	components commutator algebra commutator between these
	operators expectation values of position and momentum
	Ehrenfast theorem
	SOLVING SCHDÖDINGED FOLLATION FOD SIMPLE
	DODIEMS: One dimensional methoms (i) nontials in a hore (ii)
	PROBLEMS: One-dimensional problems: (1) particle in a box, (1)
UNIT-V	barrier penetration problem – quantum mechanical tunneling, (11)
	linear narmonic oscillator.
	higher dimensional problems: (1) Rigid rotator (qualitative),(11)
	Hydrogen atom (qualitative).
	1. Special Theory of Relativity, S. P. Puri, Pearson Education,
	India, 2013.
	2. Concepts of Modern Physics, A.Beiser, 6 th Ed., McGraw-Hill,
	2003.
	3. Modern Physics, R. Murugeshan, KiruthigaSivaprasath,S.
	Chand & Co.,17 th Revised Edition, 2014.
	4. Quantum Mechanics, S.P.Singh, M.K.Bagde, S.Chand& Co.,
TEXT BOOKS	New Delhi, 2000.
	5. Quantum Mechanics in Physics and Chemistry with
	Applications to Biology, RabiMajumdar, PHI, 2011.
	6. Modern Physics, R. Murugesan, S.Chand& Co., New Delhi.
	(Quantum Mechanics,Gupta, Kumar and Sharma. Jai
	PrakashNath&Co Meerut
	7. Quantum mechanics – Satyaprakash and Swati Saluja.
	KedarNath Ram Nath& Co.
	1. Fundamentals of Modern Physics, Peter J. Nolan, 1 st Edition,
	2014, by Physics
	2. Quantum Mechanics, V. Murugan, Pearson Education, India,
	2014.
	3. Quantum Mechanics, Alastair I. M. Rae and Jim Napolitano,
	6 th Edition, CRC Press: Taylor & Francis, 2010.
DEFEDENCE	4. Quantum Physics: A Fundamental Approach to Modern
REFERENCE	Physics, John S. Townsend, University Science Books,
BOOKS	Sausalito, California, 2010.
	5. Ouantum Mechanics: Theory and Applications, AjovGhatak
	and S. Lokanathan, Springer ScienceBusiness Media.
	Dordrecht, Netherlands. 2004.
	6. Physics of the Atom Editor(s): M. R. Wehr, J. A. Richards, T.
	W. Adair. 4 th Edition. Narosa. 2013.
	7. Quantum Mechanics, V.Devanathan, Narosa Pub. House.

		Chennai, 2005.
	8.	Quantum Mechanics, V.K. Thangappan, New Age
		International, New Delhi.
	9.	A Text Book of Quantum Mechanics, Mathews & Venkatesan,
		Tata McGraw Hill, New Delhi.
	10.	Quantum Mechanics, Ghatak&Loganathan, Macmillan
		Publications.
	11.	Introduction to Quantum Mechanics, Pauling & Wilson,
		McGraw Hill Co., NewYork.
	12.	Quantum Mechanics, Gupta, Kumar and Sharma. Jai
		PrakashNath&Co Meerut
	1.	http://hyperphysics.phy-astr.gsu.edu/hbase/qapp.html
	2.	https://swayam.gov.in/nd2_arp19_ap83/preview_
WEDI INKS	3.	https://swayam.gov.in/nd1_noc20_ph05/preview
VV EDLINKS	4.	https://www.khanacademy.org/science/physics/special-
		relativity/minkowski-spacetime/v/introduction-to-special-
		relativity-and-minkowski-spacetime-diagrams

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

	CO1	Understand various postulates of special theory of relativity.
	CO2	Appreciate the importance of transformation equations and also the general theory of relativity
COURSEO UTCOMES	CO3	Realise the wave nature of matter and understand its importance
	CO4	Derive Schrodinger equation and also realize the use of operators.
	CO5	Apply Schrödinger equation to simple problems.

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	S	S	М	S	М	М	S	М	М	М
CO3	М	М	S	М	S	S	М	S	S	S
CO4	М	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	М	М	S	М	М	S

 $\label{eq:mapping} Mapcourse outcomes (CO) for each course with program outcomes (PO) in the 3-points cale of STRONG (S), MEDIUM (M) and LOW (L).$

COURSE	FIFTH SEMESTER - CORE
COURSETITLE	CORE PRACTICALSU23PHP511
CREDITS	4
COURSE	Demonstrate various optical phenomena principles, working, apply with
OBJECTIVES	various materials and interpret the results.
1. Diffraction g	rating Normal incidence.
2. Diffraction g	rating minimum deviation.
3. Diffraction a	t a wire.
4. Specific rota	tion of sugar solution.
5. Bi-prism – D	Determination of \Box .
6. Thickness of	a thin film of Bi-prism
7. Brewster's la	aw – polarization
8. Double refra	ction (\Box e and \Box o)
9. $Y - by Corlu$	is method.
10. Dispersive p	ower of plane diffraction grating.
11. Diffraction a	straight edge.
12. Kundt's tube	e - V elocity of sound, Adiabatic Y oung's modulus of the material of the rod.
13. Forbe's metr	nod – I nermai conductivity of a metal rod.
14. Spectromete	er–Grating - Normal incidence - Wave length of Mercury spectral lines.
15. Spectromete	er – Grating - Minimum deviation - Wave length of Mercury spectral lines.
16. Spectromete	er – (i-d) curve.
17. Spectromete	er - (i-i') curve.
18. Spectromete	er – Narrow angled prism.
19. Rydberg's c	constant
20. e/m Thomse	on method
21. h by photoc	ell

- 22. Spectral response of photo conductor (LDR).
- 23. Potentiometer Resistance and Specific resistance of the coil.
- 24. Potentiometer E.M.F of a thermocouple.
- 25. Carey Foster's bridge Temperature coefficient of resistance of the coil.
- 26. Deflection Magnetometer Determination of Magnetic moment of a bar magnet and B_Husing circular coil carrying current.
- 27. Vibration magnetometer Determination of B_H using circular coil carrying current– Tan B position.
- 28. B.G Figure of Merit Charge Sensitivity

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	FIFTH SEMESTER – DISCIPLINE SPECIFIC ELECTIVE
COURSETITLE	DIGITAL ELECTRONICS AND MICROPROCESSOR 8085
CREDITS	4U23PHT512
COURSE OBJECTIVES	To learn all types of number systems, Boolean algebra and identities, digital circuits for addition and subtraction, flip-flops, registers, counters. To get the knowledge on fundamentals of 8085 architecture, instruction sets and simple programs.

UNITS	COURSE DETAILS
UNIT-I	Decimal, binary, octal, hexadecimal numbers systems and their conversions – codes: BCD, gray and excess-3 codes –code conversions –complements (1's, 2's, 9's and 10's) –binary addition, binary subtraction using 1's & 2's complement methods – Boolean laws – De-Morgan's theorem –basic logic gates -universal logic gates (NAND & NOR) –standard representation of logic functions (SOP & POS) – minimization techniques (Karnaugh map: 2, 3, 4 variables).
UNIT-II	Adders, half &full adder –subtractors, half &full subtractor –parallel binary adder – magnitude comparator – multiplexers (4:1) & demultiplexers (1:4), encoder (8-line-to-3- line) and decoder (3-line- to-8-line), BCD to seven segment decoder.

UNIT-III	Flip-flops: S-R Flip-flop , J-K Flip-flop, T and D type flip-flops, master-slave flip-flop, truth tables, registers:- serial in serial out and parallel in and parallel out – counters asynchronous:-mod-8, mod-10, synchronous - 4-bit ˚ counter – general memory operations, ROM, RAM (static and dynamic), PROM, EPROM, EEPROM, EAROM. IC – logic families: RTL, DTL, TTL logic, CMOS NAND & NOR Gates, CMOS Inverter, Programmable Logic Devices – Programmable Logic Array (PLA), Programmable Array Logic (PAL).
UNIT-IV	8085 Microprocessor: introduction to microprocessor – INTEL 8085 architecture – register organization –pin configuration of 8085, interrupts and its priority – Program Status Word (PSW) –instruction set of 8085 –addressing modes of 8085 –assembly language programming using 8085 –programmes for addition (8-Bit & 16- Bit), subtraction (8-Bit & 16-Bit), multiplication (8- Bit), division (8- Bit) – largest and smallest number in an array – BCD to ASCII and ASCII to BCD.
UNIT-V	I/O Interfaces: serial communication interface (8251-USART) – programmable peripheral interface (8255-PPI) –programmable interval timers (8253) – keyboard and display (8279), DMA controller (8237).
TEXT BOOKS	 M.Morris Mano, "Digital Design "3rd Edition, PHI, NewDelhi. Ronald J. Tocci. "Digital Systems-Principles and Applications" 6/e. PHI. New Delhi. 1999.(UNITS I to IV) S.Salivahana& S. Arivazhagan-Digital circuits and design Microprocessor Architecture, Programming and Applications with the 8085 – Penram International Publishing, Mumbai Ramesh S.Gaonakar Microcomputer Systems the 8086/8088 family – YU-Cheng Liu and GlenSA
REFERENCE BOOKS	 Herbert Taub and Donald Schilling. "Digital Integrated Electronics". McGraw Hill. 1985. S.K. Bose. "Digital Systems". 2/e. New Age International.1992. D.K. Anvekar and B.S. Sonade. "Electronic Data Converters: Fundamentals & Applications". TMH.1994. Malvino and Leach. "Digital Principles and Applications". TMG HillEdition Microprocessors and Interfacing – Douglas V.Hall Microprocessor and Digital Systems – Douglas V.Hall
WEBLINKS	1. <u>https://youtu.be/-paFaxtTCkI</u> 2. <u>https://youtu.be/s1DSZEaCX_g</u>

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

	COMMUNICATION PHYSICSU23PHE55A
Learning Objectiv	ve:To get a thorough knoowledge on transmission and reception of
radio waves, the	different types of communication like fibre optic, radar, satellite,
cellular	
UNITS	COURSE DETAILS
	RADIO TRANSMISSION AND RECEPTION: transmitter –
	modulation types of modulation – amplitude modulation –
	limitations of amplitude modulation - frequency modulation -
UNIT-I	comparison of FM and AM – demodulation- essentials in
	demodulation – receivers: AM radio receivers – types of AM radio
	receivers – stages of super heterodyne radio receiver, advantages –
	FM receiver – difference between FM and AM receivers.
	FIBER OPTIC COMMUNICATION: introduction – basic
	principle of fiber optics – advantages – construction of optical fiber
UNIT-II	– classification based on the refractive index profile – classification
	based on the number of modes of propagation – losses in optical
	fibers – attenuation–advantages of fiberoptic communication
	RADAR COMMUNICATION: introduction - basic radar system
	-radar range – antenna scanning –pulsed radar system – search
UNIT-III	radar –tracking radar – moving target indicator Doppler effect-MTI
	principle – CW Doppler radar
	SATELLITE COMMUNICATION: introduction history of
	satellites – satellite communication system – satellite orbits – basic
UNIT-IV	components of satellite communication system – commonly used
	frequency in satellite – communication –multiple access
	communication – satellite communication in India
	MOBILE COMMUNICATION: introduction – concept of cell –
	basic cellular mobile radio system – cellphone – facsimile –
UNII-V	Important features of fax machine – application of facsimile –
	vSAI (very small aperture terminals) modern IPI v (internet
	1. V.K. Metha, Dringinlag of Electronics, S. Chand & Col. td. 2012
TEVT DOOVS	1. V.K.Metha, Philoppes of Electronics, S. Chand & Colid., 2015
IEAI BOOKS	2. Anokh Shigh and Chopfa A.K., Principles of communication Engineering S Chond& Co. 2012
	1 LS Chitada Digital Communications 2020 Unicorm
DEEDENICE	nublications
REFERENCE	publications
BOOKS	2. Senior John. M, Optical Fiber Communications: Principles and
	Practice, 2009, Pearson Education.

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

Learning Objective: To get the understanding of the conventional and non conventional energy sources, their conservation and storage systems. UNITS COURSE DETAILS INTRODUCTION TO ENERGY SOURCES: Energy consumptio as a measure of prosperity – world energy future – energy sources
conventional energy sources, their conservation and storage systems. UNITS COURSE DETAILS INTRODUCTION TO ENERGY SOURCES:Energy consumption as a measure of prosperity – world energy future – energy sources
UNITS COURSE DETAILS INTRODUCTION TO ENERGY SOURCES:Energy consumptio as a measure of prosperity – world energy future – energy source
INTRODUCTION TO ENERGY SOURCES: Energy consumptio as a measure of prosperity – world energy future – energy source
as a measure of prosperity – world energy future – energy source
UNIT-I and their availability – conventional energy sources – nor
conventional and renewable energy sources – comparison – merit
and demerits.
SOLAR ENERGY:Solar energy Introduction – solar constant
solar radiation at the Earth's surface – solar radiation geometry
UNIT-II Solar radiation measurements – solar radiation data –solar energ
storage and storage systems – solar pond – solar cooker – solar wate
heater – solar greenhouse – types of greenhouses – solar cells.
WIND ENERGY: Introduction – nature of the wind – basic principl
of wind energy conversion – wind energy data and energy estimatio
UNIT-III – basic components of Wind Energy Conversion Systems (WECS)
advantages and disadvantages of WECS – applications – tidal energy
BIOMASS ENERGY: Introduction – classification – biomas
UNIT-IV conversion technologies –photosynthesis – fermentation - bioga
generation –classification of biogas plants – anaerobic digestion fo
biogas – wood gasification – advantages & disadvantages.
ENERGY STORAGE: Importance of energy storage- batteries
UNIT-V lead acid battery -nickel-cadmium battery – fuel cells – types of fue
cells – advantages and disadvantages of fuel cells – applications of
tuel cells - hydrogen storage.
1. G.D.Rai, Non-Conventional Sources of Energy, Khann
Publishers, 2009, 4"Edn.
TEXT BOOKS 2. S P Sukhstme, J K Nayak, Solar Energy, Principles of Therma
Collection and Storage, McGraw Hill, 2008, 5 rd Edn.
5. D P Kolnari, K P Singal, Rakesnkajan, PHI Learning PVI Lic
2011, 2 Euli. 1 John Twidell & Tony Weir, Denewehle Energy Descurees, Tayle
1. John Twiden a Tony wen, Kenewable Energy Resources, Taylo
2 S A Abbasi and NasamaAbbasi Banawahla Energy sources an
DEFEDENCE 2. S.A. Abbasi and NasemaAbbasi, Renewable Energy sources and their environmental impact. DHLL earning Dyt. 1 td. 2008
ROOKS 3 M P A garwal Solar Energy S Chand & Co. Ltd. New
Delhi 1982
4 H C Jain Non-Conventional Sources of Energy Sterlin
Publishers. 1986.

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

MATHEMATICAL PHYSICSU23PHE56A					
Learning Objective	ve: To understand higher mathematical concepts which are applied to				
solve problems in F	hysics and similar situations				
UNITS	COURSE DETAILS				
UNIT-I	MATRICES: types of matrices – symmetric, Hermitian, unitary and orthogonal matrices– characteristic equation of a matrix – Eigen values and Eigen vectors of a matrix – Cayley-Hamilton theorem – inverse of matrix by Cayley-Hamilton theorem – similarity transformations – diagonalization of 2x2 real symmetric matrices.				
UNIT-II	VECTOR CALCULUS: vector differentiation – directional derivatives –definitions & Physical significance of gradient, divergence, curl – Laplace operators– vector identities – line, surface and volume integrals – statement, proof and simple problems for Gauss's divergence theorem, Stoke's theorem, Green's theorem.				
UNIT-III	ORTHOGONAL CURVILINEAR COORDINATES: tangent basis vectors – scale factors – unit vectors in cylindrical and spherical coordinate systems –gradient of a scalar –divergence and curl of a vector – Laplacian in these coordinate systems.				
UNIT-IV	FOURIER SERIES: periodic functions – Dirichlet's conditions – general Fourier series – even and odd functions and their Fourier expansions – Fourier cosine and sine – half range series – change of length of interval. Fourier analysis of square wave, saw-tooth wave, half wave/full wave rectifier wave forms. FOURIER TRANSFORMS : Fourier Integral theorem(Statement only)–Fourier, Fourier sine and Fourier cosine transforms,– Fourier transform of single pulse – trigonometric, exponential and Gaussian functions – inverse Fourier transform – convolution theorem.				
UNIT-V	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS (PDE): PDE for transverse vibrations in elastic strings (one dimensional wave equation) –one dimensional heat flow equation – solutions to these PDE's by method of separation of variables – problems based on boundary conditions and initial conditions.				
TEXT BOOKS	 Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India. Mathematical Physics – P. K. Chattopadhyay, New Age International Publishers. Mathematical Physics – B. D. Gupta. Mathematical Physics – H. K. Das, S. Chand & Co, New Delhi. 				
REFERENCE BOOKS	 Fourier Analysis by M.R. Spiegel, 2004, Tata McGraw-Hill. Engineering Mathematics III- B, M. K. Venkataraman, Applied Mathematics for Scientists and Engineers, Bruce R. Kusse & Erik A. Westwig, 2nd Ed, WILEY-VCH Verlag, 2006. Vector space & Matrices – J. C. Jain, Narosa Publishing House Pvt. Ltd. 				

Continuous Internal Assessment	End Semester Examination	Total	Grade	
---------------------------------------	---------------------------------	-------	-------	--

25	75	100

NUME	RICAL METHODS AND C PROGRAMMINGU23PHE56B
earning Objectiv	ve: To understand the methods in numerical differentiation and
integration and to	b develop the problem solving skills of the student. To introduce and
explain the basic	structure, rules of compiling and execution of C programming.
UNITS	COURSE DETAILS
	NUMERICAL SOLUTIONS: determination of zeros of polynomials
LINIT I	– roots of linear and nonlinear algebraic and transcendental equations –
	bisection and Newton-Raphson methods – convergence and divergence
	of solutions
	NUMERICAL DIFFERENTIATION, INTEGRATION AND
	CURVE FITTING: Newton's forward and backward interpolation –
UNIT-II	Lagrange's interpolation – Newton-Raphson method to find square
	root and cube roots – principle of least squares – fitting a straight line
	and exponential curve – trapezoidal rule – Simpson's 1/3 and 1/8 rule
	ALGORITHM, FLOW CHART AND PROGRAM: development
	of algorithm – flow chart for solving simple problems– average of set
IINIT_III	of numbers – greatest, smallest – conversion of Fahrenheit to Celsius
	and Celsius to Kelvin, miles to kilometer – sorting set of numbers in
	ascending and descending order – square matrix, addition, subtraction
	and multiplication of order (2x2) using arrays.
	INTRODUCTION TO C: importance of C – basic structure of C
	programming – constants, variables and data types – character set, key
UNIT-IV	words and identifiers – declaration of variables and data types –
	operators – expressions: arithmetic, relational, logical, assignment –
	increment and decrement – conditional – comma operators
	CONTROL STRUCTURE: decision making with if, if-else, nested if
LINIT-V	– switch –go to – break – continue –while, do while, for statements –
	arrays, one dimensional and two dimensional – declaring arrays –
	storing arrays in memory –initializing arrays – simple programs
	1. Numerical methods, Singaravelu, Meenakshipublication, 4 th Edn.,
	1999.
	2. Numerical methodsP.Kandasamy, K.Thilagavathy, K. Gunavathi,
	S.Chand, 2016
TEXT BOOKS	3. Programming in C, Balagurusamy, TMG, ND, 2012
	4. Numerical Analysis, M.K. Venkatraman, NPH, 2013
	5. Numerical Analysis, B.D.Gupta, Konark Publishers, New Delhi
	2013
	1 Schaum's outline series. Theory and Problems of programming in
REFERENCE	C C Byron & S. Gottfried Tata McCraw Hill 2003
BOOKS	2. Numerical methods and C Drogramming Vacantics 2015
	2. Numerical methods and C Programming, veerarajan, 2015.

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	SIXTH SEMESTER – CORE
COURSETITLE	NUCLEAR AND PARTICLE PHYSICSU23PHT613
CREDITS	4
COURSE OBJECTIVES	To understand constituents, properties and models of nucleus. To give reason for radioactivity and study their properties. To learn about the principles of various particle detectors and accelerators. To acquire knowledge on different types of nuclear reactions and their applications. To know the reason for cosmic rays and their effect on the surface of earth and also understand the classification
	of elementary particles.

UNITS	COURSE DETAILS
	PROPERTIES OF NUCLEUS: constituents of nucleus – isotopes,
	isobars, isotones – nuclear size, mass, density, charge, spin, angular
	momentum, magnetic dipole moment, electric quadrupole moment
IINIT_I	(qualitative) – binding energy – mass defect – packing fraction –
	nuclear stability – binding energy per nucleon graph – properties of
	nuclear force – meson theory of nuclear forces – Yukawa potential.
	NUCLEAR MODELS: liquid drop model –Weizacker's semi-
	empirical mass formula – shell model – magic numbers.
	RADIO ACTIVITY: radio activity – laws of radioactivity –
	radioactive disintegration, decay constant, half-life, mean-life (only
	final formulae) – unitsof radioactivity-successive disintegration –
UNIT-II	transient and secular equilibrium– properties of alpha, beta and
	gamma rays – Geiger-Nuttall law – α -ray spectra –Gamow's theory
	of α -decay (qualitative) $-\beta$ -ray spectrum – neutrino theory of β -
	decay – nuclear isomerism – K-shell capture – internal conversion –
	non-conservation of parity in weak interactions.
	PARTICLE DETECTORS AND ACCELERATORS
	DETECTORS: gas detectors –ionization chamber – G-M counter –
	scintillation counter – photo multiplier tube (PMT) – semiconductor
UNIT-III	ACCELEDATORS linear accelerators evolution
	ACCELERATORS: linear accelerators – cyclotron –
	synchrotron – Detatron– electron synchrotron – proton synchrotron (Regyorton)
	NUCLEAR REACTIONS: types of nuclear reactions –
	conservation laws in nuclear reaction – O-value– threshold energy –
	nuclear fission – energy released in fission – chain reaction – critical
UNIT-IV	mass – nuclear reactor – nuclearfusion – sources of stellar energy –
	proton-proton cycle – Carbon-Nitrogen cycle – thermonuclear
	reactions – controlled thermonuclear reactions.
	ELEMENTARY PARTICLES AND
	COSMIC RAYS: Discovery of cosmic rays – primary and
TINITT V	secondary cosmic rays – cascade theory of cosmic ray showers –
UNII-V	altitude and latitude effects –discovery of positron – pair production
	– annihilation of matter – Van-Allen radiation belts – big-bang
	theory – future of the Universe (elementary ideas only).

	ELEMENTARY PARTICLES:P articles and antiparticles -
	classification of elementary particles – types of fundamental
	interactions – quantum numbers of elementary particles,
	conservation laws and symmetry – quarks and types – quark model
	(elementary ideas only).
	2. R Murugeshan & Kiruthiga Sivaprasath, Modern Physics, S.
	Chand & Co. (2013)
	3. Brijlal& N. Subramaniyan, Atomic and Nuclear Physics
	S.Chand& Co
TEXT BOOKS	4 J.B. Rajam Modern Physics S Chand & Co Publishing Co.
	5 D.C. Tayal Nuclear Physics, Himalayan Publishing House
	6 Atomic and Nuclear Drugics Bridal& N Subramaniyan
	Chandle Co
	1. Basic ideas and concepts in Nuclear Physics, K.Heyde, 3rd Edn.,
	Institute of Physics Pub.
	2. Introductory nuclear Physics by Kenneth S. Krane (whey India Det 1 to 2008)
	PVI. LIG., 2008)
	S. Concepts of nuclear physics by Bernard L. Conen. (Tata Magray Hill 1008)
	Introduction to the physics of pueloi & particles P A Duplen
	(Thomson Asia 2004)
	5 Introduction to High Energy Physics D H Perkins Cambridge
	Univ Press
	6 Introduction to Elementary Particles D Griffith John Wiley &
REFERENCE	Son
BOOKS	7. Ouarks and Leptons, F. Halzen and A.D. Martin, Wiley India.
	New Delhi
	8. Radiation detection and measurement, G.F. Knoll (John Wiley
	& Sons, 2000).
	9. Theoretical Nuclear Physics, J.M. Blatt &V.F.Weisskopf (Dover
	Pub.Inc., 1991)
	10. Physics and Engineering of Radiation Detection, Syed Naeem
	Ahmed (AcademicPress, Elsevier, 2007).
	11. 13. Nuclear Physics, S. N. Ghoshal, S Chand & Co. Edition
	2003
	15. Elements of Nuclear Physics, M. L.Pandya& R. P. S.Yadav,
	KedarNath& Ram Nath
	1. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/nuccon.html</u>
WEBLINKS	2. <u>https://www.kent.edu/physics/nuclear-physics-links</u>
	3. <u>https://www2.lbl.gov/abc/links.html</u>

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

	CO1	Describe various models that explain about the nuclear
	CO2	Give reason for various kinds of radioactivity and also know
COURSEO UTCOMES	CO3	Know the principles and applications of various particle
	CO4	Discuss the concepts used in nuclear reaction.
	CO5	Classify various elementary particles and study the effect of cosmic rays.

MAPPING WITH PROGRAM OUT COMES:

 $\label{eq:main_second} Mapcourse outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG(S), MEDIUM(M) and LOW(L).$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	М	S	S
CO2	S	S	М	S	М	М	S	М	М	М
CO3	М	М	S	М	S	М	М	S	S	S
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	М	М	S	М	М	S

COURSE	SIXTH SEMESTER – CORE
COURSETITLE	SOLID STATE PHYSICSU23PHT614
CREDITS	4
COURSE	To understand constituents, properties and models of nucleus.
OBJECTIVES	To give reason for radioactivity and study their properties. To learn
	about the principles of various particle detectors and accelerators.
	To acquire knowledge on different types of nuclear reactions and
	their applications. To know the reason for cosmic rays and their effect
	on the surface of earth and also understand the classification of
	elementary particles.

	UNITS	COURSE DETAILS
--	-------	----------------

	BONDING IN SOLIDS, CRYSTAL STRUCTURE: types of
	bonding –ionic bonding – bond energy of NaCl molecule –covalent
	bonding – metallic bonding – hydrogen bonding – Van-der-Waals
	bonding – crystal lattice – lattice translational vectors – lattice with
	basis – unit cell – Bravais' lattices – Miller indices – procedure for
UNIT-I	finding them –packing of BCC and FCC structures – structures of
	NaCl and diamond crystals –reciprocal lattice – reciprocal lattice
	vectors – properties – reciprocal lattices to SC BCC and ECC
	structures – Brillouin zones – X -rays – Bragg's law(simple problems)
	- experimental methods: I are method powder method and rotating
	crystal method
	FLEMENTARY LATTICE DVNAMICS. Lattice vibrations and
	phonons: linear monostomicand distomic chains acoustical and
	optical phonons, qualitative description of the phonon spectrum in
	optical phonons –quantative description of the phonon spectrum in solida – Dulang and Datit's Law – Einstein and Dahya theories
TINIT'E II	solids – Dulong and Petit's Law – Einstein and Debye theories
UN11-11	orspectific near of solids – 1° law (quantative only)-properties of
	metals – classical life electron theory of metals(Drude-Lorentz) –
	Onm s law – electrical and thermal conductivities – weidemann-
	Franz' law –Sommerfeld's quantum free electron theory (qualitative
	only) – Einstein's theory of specific heat capacity.
	MAGNETIC PROPERTIES OF SOLIDS: permeability,
	susceptibility, relation between them – classification of magnetic
	materials – properties of dia, para, ferro, ferri and antiferromagnetism
	- Langevin stheory of diamagnetism - Langevin stheory of
UNIT-III	paramagnetism – Curie-Weiss law – Weiss theory of
	ferromagnetism(qualitative only) – Heisenberg's quantum theory of
	ferromagnetism – domains – discussion of B-H curve –hysteresis
	and energy loss – soft and hard magnets – magnetic alloys.
	DIELECTRIC PROPERTIES OF MATERIALS: polarization
	and electric susceptibility –local electric field of an atom – dielectric
	constant and polarisability – polarization processes: electronic
	polarization- calculation of polarisability - ionic, orientational and
	space charge polarization –internal field – Clausius-Mosotti relation
UNIT-IV	-frequency dependence of dielectric constant -dielectric loss - effect
	of temperature on dielectric constant – dielectric breakdown and its
	types – classical theory of electric polarisability –normal and
	anomalous dispersion – Cauchy and Sellmeir relations – Langevin-
	Debye equation – complex dielectric constant -optical phenomena.
	Application – plasma oscillations – plasma frequency –plasmons,
	FERROELECTRIC & SUPERCONDUCTING PROPERTIES
	OF MATERIALS: Ferroelectric effect: Curie-Weiss Law –
	ferroelectric domains, P-E hysteresis loop – elementary band
	theory:Kronig-Penny model – band gap(no derivation) – conductor,
	semiconductor (P and N type) and insulator -conductivity of
UNIT-V	semiconductor – mobility – Hall effect – measurement of
	conductivity (four probe method) - Hall coefficient.
	Superconductivity:experimental results –critical temperature –critical
	magnetic field – Meissner effect –type-I and type-II superconductors
	– London's equation and penetration depth – isotope effect – idea of
	BCS theory (no derivation)

TEXT BOOKS	 Introduction to Solid State Physics, Kittel, Willey Eastern Ltd (2003). Solid state Physics, Rita John, 1st edition, TataMcGraw Hill publishers (2014). Solid State Physics , R L Singhal, Kedarnath Ram Nath& Co., Meerut (2003) Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006, Prentice-Hall of India Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning Solid-state Physics, H. Ibach and H. Luth, 2009, Springer Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India Solid State Physics, M.A. Wahab, 2011, Narosa Publishing House, ND
REFERENCE BOOKS	 Puri&Babber – Solid State Physics – S.Chand&Co. New Delhi. Kittel - Introduction to solid state physics, Wiley and Sons, 7th edition. Raghavan - Materials science and Engineering, PHI Azaroff - Introduction to solids, TMH S. O. Pillai - Solid State Physics, Narosa publication A.J. Dekker - Solid State Physics, McMillan India Ltd. Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006, Prentice-Hall of India
WEBLINKS	1. <u>https://nptel.ac.in/courses/115105099/</u> 2. <u>https://nptel.ac.in/courses/115106061/</u>

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

COURSEO UTCOMES	CO1	Classify the bonding &crystal structure also learn about the crystal structure analysis using X ray diffraction.
	CO2	Understand the lattice dynamics and thus learn the electrical and thermal properties of materials.
	CO3	Give reason for classifying magnetic material on the basis of

	their behaviour.
CO4	Comprehend the dielectric behavior of materials.
CO5	Appreciate the ferroelectric and super conducting properties of materials.

MAPPING WITH PROGRAM OUT COMES:

 $\label{eq:mapping} Mapcourse outcomes (CO) for each course with program outcomes (PO) in the 3-points cale of STRONG (S), MEDIUM (M) and LOW (L).$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	М	S	S
CO2	М	S	М	S	М	М	S	М	М	М
CO3	S	М	S	М	S	М	М	S	S	S
CO4	S	S	S	S	М	S	S	М	М	М
CO5	S	М	М	S	S	М	S	М	М	S

NA	NANOSCIENCE AND NANO TECHNOLOGYU23PHE67A				
Learning Objective: This course aims to provide an overall understanding of					
Nanoscience and Nanotechnology and introduces different types of Nanomaterials, their					
properties, fabrica	tion methods, characterization techniques and a range of applications.				
UNITS	COURSE DETAILS				
UNIT-I	NANOSCIENCE AND NANOTECHNOLOGY: Nanoscale– nature and nanostructures – nanostructures: 0D, 1D,2D– surface to volume ratio– size effect – excitons – quantum confinement– metal based nanoparticles (metal and metal oxide) – nanocomposites (non-polymer based) – carbon nanostructures – fullerene –SWCNT and MWCNT				
UNIT-II	PROPERTIES OF NANOMATERIALS: Introduction –mechanical behavior –elastic properties – hardness and strength – ductility and toughness –superplastic behavior – optical properties – surface plasmon resonance – electrical properties – dielectric materials and properties – magnetic properties – super paramagnetism – electrochemical properties – properties of CNTs.				
UNIT-III	FABRICATIONMETHODSANDVACUUMTECHNIQUES:Top-downandbottom-upapproaches–electrochemicalmethod–chemical & physicalvapourdepositions(CVD & PVD)–plasmaarcdischarge–sputtering–thermalevaporation–pulsedlaserdeposition–ballmilling–lithography:photolithography–e-beamlithography–sol-gelmethods–synthesisof CNT.				
UNIT-IV	CHARACTERIZATION TECHNIQUES:Scanning probe microscopy – scanning tunneling microscopy – atomic force microscopy – scanning electron microscopy – transmission electron microscopy –powder XRD method: determination of structure and				

	grain size analysis – UV-visible and photoluminescence spectroscopy.
	APPLICATIONS OF NANOMATERIALS: Medicine: drug delivery
	- photodynamic therapy - molecular motors -energy: fuel cells -
LINIT V	rechargeable batteries – supercapacitors– photovoltaics. sensors:
UN11-V	nanosensors based on optical and physical properties – electrochemical
	sensors – nanobiosensors. nanoelectronics: CNTFET – display screens
	- GMR read/write heads - nanorobots - applications of CNTs
	1. K.K.Chattopadhyay and A.N.Banerjee, (2012), Introduction to
	Nanoscience and Nanotechnology, PHI Learning Pvt. Ltd.,
TEXT BOOKS	2. M.A. Shah, Tokeer Ahmad (2010), Principles of Nanoscience and
	Nanotechnology, Narosa Publishing House Pvt Ltd.
	3. Mick Wilson, et al (2005) <u>Nanotechnology</u> , Overseas Press.
	1. Richard Booker and Earl Boysen, (2005) Nanotechnology, Wiley
	Publishing Inc. USA
REFERENCE	2. J.H.Fendler (2007) Nano particles and nano structured films;
BOOKS	Preparation, Characterization and Applications, John Wiley & Sons
	3. B.S.Murty, et al (2012) Textbook of Nanoscience and
	Nanotechnology, Universities Press.

25 75 100 MEDICAL INSTRUMENTATIONU23PHE67B Learning Objective: This course aims to provide background of the Physics principles inmedical instrumentation technologies through theoretical & practical learning. UNITS COURSE DETAILS BIOMETRICS:Introduction to man-instrument system and its components -problems encountered in measuring living systems - transducers- force, motion, pressure transducers. AUDIOMETRY:Mechanism of hearing – air and bone conduction – threshold of hearing –audiometer – masking in audiometry – pure tone and speech audiometer – evoked response audiometry – hearing aids BIOELECTRIC POTENTIALS AND ELECTRODES:Biomedical signals – sources of bioelectric potentials – bio-potential electrodes – skin surface, needle electrodes. BIOMEDICAL RECORDERS: Electro-conduction system of heart – electro cardiogram (ECG) – Einthoven's triangle — electro encephalogram (EEG) –brain waves – EEG instrumentation – recording of evoked potentials – electro myogram (EMG)–pulse oximeter. DIAGNOSTIC RADIOLOGY: Radiography – primary radiological image – contrast agents, filters- beam restrictor, grid –image quality COMPUTED TOMOGRAPHY:linear tomography – computed tomography – helical and multi slice – image quality – radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes – radiopharmaceuticals – technetium generator – gamma camera – positron emission tomography – disposal of radioactive waste. UNIT-III	Continuous Inter	rnalAssessment	End Semester Examination	Total	Grade	
MEDICAL INSTRUMENTATION/023PHE67B Learning Objective: This course aims to provide background of the Physics principles inmedical instrumentation technologies through theoretical & practical learning. UNITS COURSE DETAILS BIOMETRICS: Introduction to man-instrument system and its components – problems encountered in measuring living systems – transducers – force, motion, pressure transducers. AUDIOMETRY: Mechanism of hearing – air and bone conduction – threshold of hearing –audiometer – masking in audiometry – pure tone and speech audiometer – evoked response audiometry – hearing aids BIOELECTRIC POTENTIALS AND ELECTRODES:Biomedical signals – sources of bioelectric potentials – resting, action and propagation of bioelectric potentials – resting, action and propagation of bioelectric potentials – lectro encephalogram (EEG) – brain waves – EEG instrumentation – recording of evoked potentials – electro ardiogram (EGG) – Einthoven's triangle — electro encephalogram (EEG) – brain waves – EEG instrumentation – recording of evoked potentials – electro myogram (EMG)—pulse oximeter. UNIT-III UNIT-III MEDICAL RECORDERS: Electro-conduction system of heart – electro cardiogram (ECG) – Einthoven's triangle — electro encephalogram (EEG) – brain waves – EEG instrumentation – recording of evoked potentials – electro myogram (EMG)—pulse oximeter. UNIT-III DIAGNOSTIC RADIOLOGY: Radiography – primary radiological image – contrast agents, filters– beam restrictor, grid –image quality	25		75	100		
Learning Objective: This course aims to provide background of the Physics principles inmedical instrumentation technologies through theoretical & practical learning. UNITS COURSE DETAILS UNITS COURSE DETAILS BIOMETRICS: Introduction to man-instrument system and its components –problems encountered in measuring living systems – transducers – force, motion, pressure transducers. AUDIOMETRY: Mechanism of hearing – air and bone conduction – threshold of hearing –audiometer – masking in audiometry – pure tone and speech audiometer – evoked response audiometry – hearing aids BIOELECTRIC POTENTIALS AND ELECTRODES:Biomedical signals – sources of bioelectric potentials – resting, action and propagation of bioelectric potentials – resting, action and propagation of bioelectric potentials – bio-potential electrodes – skin surface, needle electrodes. BIOMEDICAL RECORDERS: Electro-conduction system of heart – electro cardiogram (ECG) – Einthoven's triangle — electro encephalogram (EEG) – brain waves – EEG instrumentation – recording of evoked potentials – electro ardiogram (EMG)–pulse oximeter. UNIT-III DIAGNOSTIC RADIOLOGY: Radiography – primary radiological image – contrast agents, filters – beam restrictor, grid –image quality COMPUTED TOMOGRAPHY:linear tomography – computed tomography – helical and multi slice –image quality – cadiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes – radiopharmaceuticals – technetium generator – gamma camera – positron emission tomography – disposal of radioactive waste. UNIT-IV ULTRASOUND IMAGING: Ultrasound transducer – ultrasound imaging Dometand pultareaund in transourd intrasound im		MEDICAL IN	STRUMENTATIONU23PHE67B			
inmedical instrumentation technologies through theoretical & practical learning. UNITS COURSE DETAILS BIOMETRICS:Introduction to man-instrument system and its components –problems encountered in measuring living systems – transducers–force, motion, pressure transducers. AUDIOMETRY:Mechanism of hearing – air and bone conduction – threshold of hearing –audiometer – masking in audiometry – pure tone and speech audiometer – evoked response audiometry – hearing aids BIOELECTRIC POTENTIALS AND ELECTRODES:Biomedical signals – sources of bioelectric potentials – resting, action and propagation of bioelectric potentials – bio-potential electrodes – skin surface, needle electrodes. BIOMEDICAL RECORDERS: Electro-conduction system of heart – electro cardiogram (EEG) –brain waves – EEG instrumentation – recording of evoked potentials – electro myogram (EMG)–pulse oximeter. UNIT-III DIAGNOSTIC RADIOLOGY: Radiography – primary radiological image – contrast agents, filters– beam restrictor, grid –image quality COMPUTED TOMOGRAPHY:linear tomography – computed tomography – helical and multi slice –image quality– radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes – radiopharmaceuticals – technetium generator – gamma camera – positron emission tomography – disposal of radioactive waste. UNIT-IV ULTRASOUND IMAGING: Ultrasound transound transound transound transound transound massing Pomplaceument with the infortution of the store defined to the store defined to the store defined to the store defined to the st	Learning Object	ive:This course air	ms to provide background of the	Physics]	principles	
UNITSCOURSE DETAILSUNIT-IBIOMETRICS:Introduction to man-instrument system and its components -problems encountered in measuring living systems - transducers. AUDIOMETRY:Mechanism of hearing - air and bone conduction - threshold of hearing -audiometer - masking in audiometry - pure tone and speech audiometer - evoked response audiometry - hearing aidsUNIT-IIBIOELECTRIC POTENTIALS AND ELECTRODES:Biomedical signals - sources of bioelectric potentials - resting, action and propagation of bioelectric potentials - bio-potential electrodes - skin surface, needle electrodes. BIOMEDICAL RECORDERS: Electro-conduction system of heart - electro cardiogram (ECG) - Einthoven's triangle electro encephalogram (EEG) -brain waves - EEG instrumentation - recording of evoked potentials - electro myogram (EMG)-pulse oximeter.UNIT-IIIDIAGNOSTIC RADIOLOGY: Radiography - primary radiological image - contrast agents, filters- beam restrictor, grid -image quality COMPUTED TOMOGRAPHY:linear tomography - computed tomography - helical and multi slice -image quality- radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes - radiopharmaceuticals - technetium generator - gamma camera - positron emission tomography - disposal of radioactive waste.UNIT-IVULTRASOUND IMAGING: Ultrasound image or ultrasound immediane Davelage pulse output of the specific affects of the specific action of the specific action of the specific action of the specific action and prography - disposal of radioactive waste.	inmedical instrum	entation technologi	ies through theoretical & practical l	earning.		
UNIT-IBIOMETRICS:Introduction to man-instrument system and its components -problems encountered in measuring living systems - transducers- force, motion, pressure transducers.AUDIOMETRY:Mechanism of hearing - air and bone conduction - threshold of hearing -audiometer - masking in audiometry - pure tone and speech audiometer - evoked response audiometry - hearing aidsBIOELECTRIC POTENTIALS AND ELECTRODES:Biomedical signals - sources of bioelectric potentials - resting, action and propagation of bioelectric potentials - bio-potential electrodes - skin surface, needle electrodes.BIOMEDICAL RECORDERS: Electro-conduction system of heart - electro cardiogram (ECG) - Einthoven's triangle electro encephalogram (EEG) -brain waves - EEG instrumentation - recording of evoked potentials - electro myogram (EMG)-pulse oximeter.UNIT-IIIDIAGNOSTIC RADIOLOGY: Radiography - primary radiological image - contrast agents, filters- beam restrictor, grid -image quality COMPUTED TOMOGRAPHY:linear tomography - computed tomography - helical and multi slice -image quality- radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes - radiopharmaceuticals - technetium generator - gamma camera - positron emission tomography - disposal of radioactive waste.UNIT-IVULTRASOUND IMAGING: Ultrasound transducer - ultrasound immed programe apprender with the shift of the stransducer - ultrasound immed programe apprender of the stransducer - ultrasound immed program apprender of the stransducer - ultrasound immed program apprender of the stransducer - ultrasound immed program apprender of the stransducer - ultrasound	UNITS	COURSE DETAILS				
UNIT-Icomponents -problems encountered in measuring living systems - transducers- force, motion, pressure transducers.AUDIOMETRY:Mechanism of hearing - air and bone conduction - threshold of hearing -audiometer - masking in audiometry - pure tone and speech audiometer - evoked response audiometry - hearing aidsBIOELECTRIC POTENTIALS AND ELECTRODES:Biomedical signals - sources of bioelectric potentials - resting, action and propagation of bioelectric potentials -bio-potential electrodes - skin surface, needle electrodes.BIOMEDICAL RECORDERS: Electro-conduction system of heart - electro cardiogram (ECG) - Einthoven's triangle electro encephalogram (EEG) -brain waves - EEG instrumentation - recording of evoked potentials - electro myogram (EMG)-pulse oximeter.UNIT-IIIDIAGNOSTIC RADIOLOGY: Radiography - primary radiological image - contrast agents, filters- beam restrictor, grid -image quality COMPUTED TOMOGRAPHY:linear tomography - computed tomography - helical and multi slice -image quality- radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes - radiopharmaceuticals - technetium generator - gamma camera - positron emission tomography - disposal of radioactive waste.UNIT-IVULTRASOUND IMAGING: Ultrasound transducer - ultrasound image polar ultrasound image - multice filte affecte		BIOMETRICS: I	ntroduction to man-instrument	system	and its	
UNIT-Itransducers– force, motion, pressure transducers.AUDIOMETRY:Mechanism of hearing – air and bone conduction – threshold of hearing –audiometer – masking in audiometry – pure tone and speech audiometer – evoked response audiometry – hearing aidsBIOELECTRIC POTENTIALS AND ELECTRODES:Biomedical signals – sources of bioelectric potentials – resting, action and propagation of bioelectric potentials – bio-potential electrodes – skin surface, needle electrodes.BIOMEDICAL RECORDERS: Electro-conduction system of heart – electro cardiogram (ECG) – Einthoven's triangle — electro encephalogram (EEG) –brain waves – EEG instrumentation – recording of evoked potentials – electro myogram (EMG)–pulse oximeter.UNIT-IIIDIAGNOSTIC RADIOLOGY: Radiography – primary radiological image – contrast agents, filters– beam restrictor, grid –image quality COMPUTED TOMOGRAPHY:linear tomography – computed tomography – helical and multi slice –image quality– radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes – radiopharmaceuticals – technetium generator – gamma camera – positron emission tomography – disposal of radioactive waste.UNIT-IVULTRASOUND IMAGING: Ultrasound transducer – ultrasound immed propagator – pulse of the condex of the sector.		componentspro	blems encountered in measuring	living s	ystems –	
UNIT-IAUDIOMETRY:Mechanism of hearing – air and bone conduction – threshold of hearing –audiometer – masking in audiometry – pure tone and speech audiometer – evoked response audiometry – hearing aidsBIOELECTRIC POTENTIALS AND ELECTRODES:Biomedical signals – sources of bioelectric potentials – resting, action and propagation of bioelectric potentials – bio-potential electrodes – skin surface, needle electrodes. BIOMEDICAL RECORDERS: Electro-conduction system of heart – electro cardiogram (ECG) – Einthoven's triangle — electro encephalogram (EEG) –brain waves – EEG instrumentation – recording of evoked potentials – electro myogram (EMG)–pulse oximeter.UNIT-IIIDIAGNOSTIC RADIOLOGY: Radiography – primary radiological image – contrast agents, filters– beam restrictor, grid –image quality COMPUTED TOMOGRAPHY:linear tomography – computed tomography – helical and multi slice –image quality– radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes – radiopharmaceuticals – technetium generator – gamma camera – positron emission tomography – disposal of radioactive waste.UNIT-IVULTRASOUND IMAGING: Ultrasound transducer – ultrasound imaging Demeter ultrasound ultrasound transducer – ultrasound	LINIT I	transducers-force	e, motion, pressure transducers.			
UNIT-IIIthreshold of hearing –audiometer – masking in audiometry – pure tone and speech audiometer – evoked response audiometry – hearing aidsUNIT-IIIBIOELECTRIC POTENTIALS AND ELECTRODES:Biomedical signals – sources of bioelectric potentials – resting, action and propagation of bioelectric potentials – bio-potential electrodes – skin surface, needle electrodes. BIOMEDICAL RECORDERS: Electro-conduction system of heart – electro cardiogram (ECG) – Einthoven's triangle — electro encephalogram (EEG) –brain waves – EEG instrumentation – recording of evoked potentials – electro myogram (EMG)–pulse oximeter.UNIT-IIIDIAGNOSTIC RADIOLOGY: Radiography – primary radiological image – contrast agents, filters– beam restrictor, grid –image quality COMPUTED TOMOGRAPHY:linear tomography – computed tomography – helical and multi slice –image quality– radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes – radiopharmaceuticals – technetium generator – gamma camera – positron emission tomography – disposal of radioactive waste.UNIT-IVULTRASOUND IMAGING: Ultrasound transducer – ultrasound image accurity the bio efforts	UNIT-I	AUDIOMETRY	:Mechanism of hearing – air and	bone con	duction –	
UNIT-IIIand speech audiometer – evoked response audiometry – hearing aidsUNIT-IIIBIOELECTRIC POTENTIALS AND ELECTRODES:Biomedical signals – sources of bioelectric potentials – resting, action and propagation of bioelectric potentials – bio-potential electrodes – skin surface, needle electrodes.BIOMEDICAL RECORDERS: Electro-conduction system of heart – electro cardiogram (ECG) – Einthoven's triangle — electro encephalogram (EEG) –brain waves – EEG instrumentation – recording of evoked potentials – electro myogram (EMG)–pulse oximeter.UNIT-IIIDIAGNOSTIC RADIOLOGY: Radiography – primary radiological image – contrast agents, filters– beam restrictor, grid –image quality COMPUTED TOMOGRAPHY:linear tomography – computed tomography – helical and multi slice –image quality– radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes – radiopharmaceuticals – technetium generator – gamma camera – positron emission tomography – disposal of radioactive waste.UNIT-IVULTRASOUND IMAGING: Ultrasound transducer – ultrasound transducer – ultrasound imaging Domelecutical vibration dispose or reality % big offects		threshold of heari	ng -audiometer - masking in audio	ometry –	pure tone	
UNIT-IIBIOELECTRIC POTENTIALS AND ELECTRODES:Biomedical signals – sources of bioelectric potentials – resting, action and propagation of bioelectric potentials –bio-potential electrodes – skin surface, needle electrodes. BIOMEDICAL RECORDERS: Electro-conduction system of heart – electro cardiogram (ECG) – Einthoven's triangle — electro encephalogram (EEG) –brain waves – EEG instrumentation – recording of evoked potentials – electro myogram (EMG)–pulse oximeter.UNIT-IIIDIAGNOSTIC RADIOLOGY: Radiography – primary radiological image – contrast agents, filters– beam restrictor, grid –image quality COMPUTED TOMOGRAPHY:linear tomography – computed tomography – helical and multi slice –image quality– radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes – radiopharmaceuticals – technetium generator – gamma camera – positron emission tomography – disposal of radioactive waste.UNIT-IVULTRASOUND IMAGING: Ultrasound transducer – ultrasound		and speech audior	meter – evoked response audiometr	y – heari	ng aids	
UNIT-IIsignals - sources of bioelectric potentials - resting, action and propagation of bioelectric potentials -bio-potential electrodes - skin surface, needle electrodes.BIOMEDICAL RECORDERS: Electro-conduction system of heart - electro cardiogram (ECG) - Einthoven's triangle electro encephalogram (EEG) -brain waves - EEG instrumentation - recording of evoked potentials - electro myogram (EMG)-pulse oximeter.UNIT-IIIDIAGNOSTIC RADIOLOGY: Radiography - primary radiological image - contrast agents, filters- beam restrictor, grid -image quality COMPUTED TOMOGRAPHY:linear tomography - computed tomography - helical and multi slice -image quality- radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes - radiopharmaceuticals - technetium generator - gamma camera - positron emission tomography - disposal of radioactive waste.UNIT-IVULTRASOUND IMAGING: Ultrasound transducer - ultrasound ultrasound transducer - ultrasound		BIOELECTRIC	POTENTIALS AND ELECTRO	ODES:B	iomedical	
UNIT-IIpropagation of bioelectric potentials -bio-potential electrodes - skin surface, needle electrodes.BIOMEDICAL RECORDERS: Electro-conduction system of heart - electro cardiogram (ECG) - Einthoven's triangle electro encephalogram (EEG) -brain waves - EEG instrumentation - recording of evoked potentials - electro myogram (EMG)-pulse oximeter.UNIT-IIIDIAGNOSTIC RADIOLOGY: Radiography - primary radiological image - contrast agents, filters- beam restrictor, grid -image quality COMPUTED TOMOGRAPHY:linear tomography - computed tomography - helical and multi slice -image quality- radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes - radiopharmaceuticals - technetium generator - gamma camera - positron emission tomography - disposal of radioactive waste.UNIT-IVULTRASOUND IMAGING: Ultrasound transducer - ultrasound imaging Dompler ultrasound ultrasound image guality % his efforts		signals – source	es of bioelectric potentials – re	sting, ac	ction and	
UNIT-IIsurface, needle electrodes.BIOMEDICAL RECORDERS: Electro-conduction system of heart – electro cardiogram (ECG) – Einthoven's triangle — electro encephalogram (EEG) –brain waves – EEG instrumentation – recording of evoked potentials – electro myogram (EMG)–pulse oximeter.UNIT-IIIDIAGNOSTIC RADIOLOGY: Radiography – primary radiological image – contrast agents, filters– beam restrictor, grid –image quality COMPUTED TOMOGRAPHY:linear tomography – computed tomography – helical and multi slice –image quality– radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes – radiopharmaceuticals – technetium generator – gamma camera – positron emission tomography – disposal of radioactive waste.UNIT-IVULTRASOUND IMAGING: Ultrasound transducer – ultrasound imaging _ Domplem ultrasoundultrasoundultrasoundultrasoundultrasoundultrasoundultrasoundultrasound		propagation of bi	ioelectric potentials -bio-potential	electrod	es – skin	
UNIT-IIBIOMEDICAL RECORDERS: Electro-conduction system of heart – electro cardiogram (ECG) – Einthoven's triangle — electro encephalogram (EEG) –brain waves – EEG instrumentation – recording of evoked potentials – electro myogram (EMG)–pulse oximeter.DIAGNOSTIC RADIOLOGY: Radiography – primary radiological image – contrast agents, filters– beam restrictor, grid –image quality COMPUTED TOMOGRAPHY:linear tomography – computed tomography – helical and multi slice –image quality– radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes – radiopharmaceuticals – technetium generator – gamma camera – positron emission tomography – disposal of radioactive waste.UNIT-IVULTRASOUND IMAGING: Ultrasound transducer – ultrasound imaging Domploguely with ageneration ageneration filters	UNIT-II	surface, needle ele	ectrodes.			
- electro cardiogram (ECG) – Einthoven's triangle — electro encephalogram (EEG) –brain waves – EEG instrumentation – recording of evoked potentials – electro myogram (EMG)–pulse oximeter.UNIT-IIIDIAGNOSTIC RADIOLOGY: Radiography – primary radiological image – contrast agents, filters– beam restrictor, grid –image quality COMPUTED TOMOGRAPHY:linear tomography – computed tomography – helical and multi slice –image quality– radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes – radiopharmaceuticals – technetium generator – gamma camera – positron emission tomography – disposal of radioactive waste.UNIT-IVULTRASOUND IMAGING: Ultrasound transducer – ultrasound imaging Dompler ultrasound ultrasound image guality % his affects		BIOMEDICAL	RECORDERS: Electro-conduction	on system	n of heart	
UNIT-IIIDIAGNOSTIC RADIOLOGY: Radiography – primary radiological image – contrast agents, filters– beam restrictor, grid –image quality COMPUTED TOMOGRAPHY:linear tomography – computed tomography – helical and multi slice –image quality– radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes – radiopharmaceuticals – technetium generator – gamma camera – positron emission tomography – disposal of radioactive waste.UNIT-IVULTRASOUND IMAGING: Ultrasound transducer – ultrasound imaging _ Domplor ultrasound _ ultrasound image guality % his affects		 – electro cardiogram 	m (ECG) – Einthoven's triangle — ele	ectro ence	phalogram	
- electro myogram (EMG)-pulse oximeter. DIAGNOSTIC RADIOLOGY: Radiography – primary radiological image – contrast agents, filters– beam restrictor, grid –image quality COMPUTED TOMOGRAPHY:linear tomography – computed tomography – helical and multi slice –image quality– radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes – radiopharmaceuticals – technetium generator – gamma camera – positron emission tomography – disposal of radioactive waste. UNIT-IV ULTRASOUND IMAGING: Ultrasound transducer – ultrasound image guality % his affects		(EEG) –brain wave	s – EEG instrumentation – recording	of evoked	potentials	
UNIT-IIIDIAGNOSTIC RADIOLOGY: Radiography – primary radiological image – contrast agents, filters– beam restrictor, grid –image quality COMPUTED TOMOGRAPHY:linear tomography – computed tomography – helical and multi slice –image quality– radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes – radiopharmaceuticals – technetium generator – gamma camera – positron emission tomography – disposal of radioactive waste.UNIT-IVULTRASOUND IMAGING: Ultrasound transducer – ultrasound imaging Dompler ultrasound ultrasound image quality % his affects		– electro myogram	(EMG)–pulse oximeter.	•		
UNIT-IIIImage – contrast agents, filters– beam restrictor, grid –image quality COMPUTED TOMOGRAPHY:linear tomography – computed tomography – helical and multi slice –image quality– radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes – radiopharmaceuticals – technetium generator – gamma camera – positron emission tomography – disposal of radioactive waste.UNIT-IVULTRASOUND IMAGING: Ultrasound transducer – ultrasound imaging Dompler ultrasound ultrasound image quality % his affects		DIAGNOSTIC I	RADIOLOGY: Radiography – pr	imary rad	diological	
UNIT-IIICOMPUTED TOMOGRAPHY: linear tomography - computed tomography - helical and multi slice -image quality- radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes - radiopharmaceuticals - technetium generator - gamma camera - positron emission tomography - disposal of radioactive waste.UNIT-IVULTRASOUND IMAGING: Ultrasound transducer - ultrasound imaging Depender ultrasound - ultrasound image quality % his affects		1mage – contrast a	agents, filters– beam restrictor, grid	-image o	quality	
UNIT-IIItomography - helical and multi slice -image quality- radiation dose.RADIOISOTOPES AND NUCLEAR MEDICINE: Radioisotopes - radiopharmaceuticals - technetium generator - gamma camera - positron emission tomography - disposal of radioactive waste.UNIT-IVULTRASOUND IMAGING: Ultrasound transducer - ultrasound imaging Domplar ultrasound - ultrasound image quality % his affects		COMPUTED	OMOGRAPHY: linear tomograp	ony – o	computed	
Image: Relation of the second seco	UNIT-III	tomography – hel	ical and multi slice –image quality-	- radiatio	n dose.	
radiopharmaceuticals – technetium generator – gamma camera – positron emission tomography – disposal of radioactive waste. UNIT-IV Unitrasound image guality % his affects		RADIOISOTOP	ES AND NUCLEAR MEDICINI	L: K adioi	sotopes –	
UNIT-IV UNIT-IV positron emission tomography – disposal of radioactive waste. UNIT-IV imaging Dependent ultrasound image quality is his affects		radiopharmaceuticals – technetium generator – gamma camera –				
UNIT-IV		Desitron emission	tomography – disposal of radioacti	ive waste	.14	
	UNIT-IV	ULIKASUUND	LIVIAGING: Ultrasound transdu	ucer - u	ntrasound	

	MAGNETIC RESONANCE IMAGING: Proton & external magnetic				
	field - precession - radiofrequency and resonance - MRI signal - relaxation				
	time – MRI instrumentation – imaging sequences – biosafety				
	PROJECT ASSIGNMENT: Clinical practice of <i>one</i> of the				
LINIT V	following:electro cardiogram, electro encephalogram, electro myogram,				
	electro oculogram, computed tomography, positron emission tomography,				
	ultrasound				
	1. Leslie Cromwell, Fred Weibell, Erich Pfieffer(2002) Biomedical				
	Instrumentation & Measurements Prentice Hall of India, New Delhi.				
ΤΕΥΤ ΡΟΟΚΟ	2. R. S. Khandpur (2003)Handbook of Biomedical Instrumentation				
IEAI DUURS	2 nd Edn. Tata McGraw Hill, New Delhi.				
	3. KuppusamyThayalan (2017), Basic Radiological Physics 2 nd Edn.				
	Jaypee Brothers Medical Publishers (P) Ltd, New Delhi.				
	1. John Webster (2004) Bioinstrumentation John Wiley and Sons,				
	Singapore.				
REFERENCE	2. John Enderle, Susan Blanchard, Joseph Bronzino (2005)				
BOOKS	Introduction to Biomedical Engineering, 2 nd ed. Elsevier, San Deigo				
	3. William Hendee, Geoffrey Ibbott, Eric Hendee (2005) Radiation				
	therapy Physics 3 rd ed. Wiley-Liss, New Jersey				

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

	MATERIALS SCIENCEU23PHE681
Learning Object	tive: To learn imperfections in crystals, deformation of materials and
testing of materia	ls. To get knowledge on behavior of a material, under the action of light
and their applicat	ions. To know the applications of crystal defects.
UNITS	COURSE DETAILS
	CRYSTAL IMPERFECTIONS: Introduction – point defects:
	vacancies(problems), interstitials, impurities, electronic defects -
	equilibrium concentration of point imperfections (problems)-
UNIT-I	application of point defects -line defects: edge dislocation(problems),
	screw dislocation – surface defects: extrinsic defects – intrinsic
	defects: grain boundaries, tilt &twist boundaries, twin boundaries,
	stacking faults – volume defects – effect of imperfections.
	MATERIAL DEFORMATION: Introduction – elastic behavior of
	materials – atomic model of elastic behavior –modulus as a parameter
UNIT-II	in design – rubber like elasticity – inelastic behavior of materials –
	relaxation process – viscoelastic behavior of materials – spring-Dash
	pot models of viscoelastic behavior of materials.
	PERMANENT DEFORMATION AND STRENGTHENING
	METHODS OF MATERIALS: Introduction –plastic deformation:
LINIT III	tensile stress-strain curve – plastic deformation by slip – creep:
	mechanism of creep – creep resistant materials – strengthening
	methods: strain hardening, grain refinement – solid solution
	strengthening – precipitation strengthening.
IINIT_IV	OPTICAL MATERIALS: Introduction – optical absorption in
	metals, semiconductors and insulators - NLO materials and their

	applications – display devices and display materials: fluorescence and
	phosphorescence – light emitting diodes –liquid crystal displays.
	MECHANICAL TESTING: Destructive testing: tensile test, compression test, hardness test – nondestructive testing (NDT):
UNIT-V	radiographic methods, ultrasonic methods – thermal methods of NDT:
	thermography – equipment used for NDT: metallurgical microscope
	1. Material science and Engineering, Raghavan V, Prentice Hall of
TEXT BOOKS	India, Sixth Edition, 2015
	2. Materials science, V. Rajendran, McGraw Hill publications2011
	1. William D. Callister, Jr., Material Science & Engineering - An
	Introduction, 8th Edition, John Wiley & Sons, Inc., 2007
	2. W. Bolton, "Engineering materials technology", 3rd Edition,
DEFEDENCE	Butterworth & Heinemann, 2001.
REFERENCE	3. Donald R. Askeland, Pradeep P. Phule, "The Science and
DUUKS	Engineering of Materials", 5th Edition, Thomson Learning, First
	Indian Reprint, 2007.
	4. William F. Smith, "Structure and Properties of Engineering
	Alloys", Mc-Graw-Hill Inc., U.S.A, 2nd edition, 1993.

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

DIGITAL PHOTOGRAPHYU23PHE682			
Learning Object	tive: To understand the principles of photography and image formation		
and the science	e and arts behind it. To understand the essential components		
ofconventional ar	nd digital cameras and also the different image processing techniques.		
UNITS	UNITS COURSE DETAILS		
	PHOTOGRAPHY AND BASIC PRINCIPLE OF IMAGE		
	FORMATION: principle –chemical route and digital route –light,		
TINIT'E T	wavelengths, colours – shadows – light intensity and distance –		
UNII-I	making light form images –pin-hole images – practical limitations to		
	pin-hole images – lens instead of pin-hole – focal length and image		
	size – imaging of closer subjects.		
	LENSES – CONTROLLING THE IMAGES: photographic lens –		
	focal length and angle of view (problems) – focusing movement –		
UNIT-II	aperture and f-numbers (problems) – depth of field– depth of focus –		
	image stabilization – lenses for digital cameras – lens and camera care		
	CAMERA USING FILMS AND ITS TYPES: camera and its		
	essential components- shutter - aperture - light measurement - film		
UN11-111	housing – camera types: view camera– view finder camera – Reflex		
	camera- single lens reflex (SLR) camera		

UNIT-IV	DIGITAL CAMERAS PRINCIPLE AND TYPES: principle of digital image capturing –comparison of digital and analog picture information – megapixel – grain, noise and pixel density – optical and digital zooming – image stabilizer – bit depth – white balance – colour modes – file formats (TIFF, RAW & JPEG) – storage cards and types – digital cameras: camera phones – compact camera – hybrid camera – digital SLR
UNIT-V	THE DIGITAL IMAGE – POSTPRODUCTION: hardware: computer and its peripherals – software: saving digital file – basic editing: navigating the image – undo/redo/history – crop – rotate – brightness and contrast – colour balance – hue/saturation – dodge/burn – cloning and retouching – removing an element in an image – advanced editing: histogram/levels – curves – selection tools: magic wand – printing digital images: inkjet printer – laser printer – dye sub printer – lambda/light jet printers.
TEXT BOOKS	 Michel J.Langford , Anna Fox & Richard Sawdon Smith, Basic photography, 9th Edition, , 2010-NL, Focal press, London Henry Carroll, Read this if you want to take great photographs of people, Laurence King Publishing
REFERENCE BOOKS	 Mark Galer, Digital Photography in Available Light essential skills, 2006, Focal press, London Paul Harcourt Davies, The Photographer's practical handbook, 2005, UK PRESS

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	ALLIED PAPER
COURSETITLE	ALLIED PHYSICS – I
CREDITS	3
COURSE	To impart basicprinciples of Physics that which would be helpful for
OBJECTIVES	students who have taken programmes other than Physics.

UNITS	COURSE DETAILS
	WAVES, OSCILLATIONS AND ULTRASONICS: simple
UNIT-I	harmonic motion (SHM) – composition of two SHMs at right angles
	(periods in the ratio 1:1) – Lissajous figures – uses – laws of
	transverse vibrations of strings – determination of AC frequency
	using sonometer (steel and brass wires) – ultrasound – production –
	piezoelectric method – application of ultrasonics.
	PROPERTIES OF MATTER: <i>Elasticity</i> : elastic constants – bending
	of beam – theory of non- uniform bending – determination of Young's
LINUT II	modulus by non-uniform bending – energy stored in a stretched wire –
UNII-11	torsion of a wire – determination of rigidity modulus by torsional
	pendulum
	Viscosity: streamline and turbulent motion – critical velocity –

	coefficient of viscosity – Poiseuille's formula – comparison of viscosities – burette method,
UNIT-III	HEAT AND THERMODYNAMICS: Joule-Kelvin effect – Joule- Thomson porous plug experiment – theory – temperature of inversion – liquefaction of Oxygen– Linde's process of liquefaction of air– liquid Oxygen for medical purpose– importance of cryocoolers – thermodynamic system – thermodynamic equilibrium – laws of thermodynamics.
UNIT-IV	ELECTRICITY AND MAGNETISM: potentiometer – principle – measurement of thermo emf using potentiometer –magnetic field due to a current carrying conductor – Biot-Savart's law – field along the axis of the coil carrying current.
UNIT-V	DIGITAL ELECTRONICS AND DIGITAL INDIA: logic gates, OR, AND, NOT, NAND, NOR, EXOR logic gates – universal building blocks – Boolean algebra – De Morgan's theorem – verification – overview of Government initiatives: software technological parks under MeitY, NIELIT- semiconductor laboratories under Dept. of Space – an introduction to Digital India
UNIT-VI	PROFESSIONAL COMPONENTS: Expert lectures –seminars – webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 R.Murugesan (2001), AlliedPhysics,S. Chand&Co,NewDelhi. BrijlalandN.Subramanyam (1994), WavesandOscillations,VikasPublishing House,NewDelhi. BrijlalandN.Subramaniam (1994), PropertiesofMatter,S.Chand&Co.,NewDelhi. J.B.Rajam and C.L.Arora (1976). Heat and Thermodynamics (8th edition), S.Chand&Co.,New Delhi. R.Murugesan(2005), OpticsandSpectroscopy,S.Chand&Co,NewDelhi. A.Subramaniyam, AppliedElectronics2ndEdn.,NationalPublishingCo.,Chennai.
REFERENCE BOOKS	 ResnickHallidayandWalker(2018).FundamentalsofPhysics(11the dition),JohnWilleyand Sons, Asia Pvt.Ltd., Singapore. V.R.KhannaandR.S.Bedi (1998), TextbookofSound1stEdn. KedharnaathPublish&Co, Meerut. N.S.KhareandS.S.Srivastava (1983), ElectricityandMagnetism10thEdn.,AtmaRam&Sons, New Delhi. D.R.KhannaandH.R. Gulati(1979). Optics,S. Chand &Co.Ltd.,New Delhi. V.K.Metha(2004).Principlesofelectronics6th Edn. S.Chandandcompany.
WEBLINKS	 <u>https://youtu.be/M_5KYncYNyc</u> <u>https://youtu.be/IjJLJgIvaHY</u> <u>https://youtu.be/7mGqd9HQ_AU</u> <u>https://youtu.be/h5jOAw57OXM</u> <u>https://learningtechnologyofficial.com/category/fluid-</u>

	mechanics-lab/
6.	http://hyperphysics.phy-
	astr.gsu.edu/hbase/permot2.htmlhttps://www.youtube.com/watc
	h?v=gT8Nth9NWPMhttps://www.youtube.com/watch?v=9mX
	OMzUruMQ&t=1shttps://www.youtube.com/watch?v=m4u-
	SuaSu1s&t=3shttps://www.biolinscientific.com/blog/what-are-
	surfactants-and-how-do-they-work

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

COURSE OUTCOM ES	CO1	Explain types of motion and extend their knowledge in t study of variousdynamic motions analyze and demonstra mathematically. Relate theory with practical applications medical field.							
	CO2	Explaintheirknowledgeofunderstandingaboutmaterialsandtheir behaviorsandapplyittovarioussituationsinlaboratoryandreal life. Connect droplet theory with Corona transmission.							
	CO3	Comprehend basic concept of thermodynamics concept of entropyand associated theorems able to interpret the process of flowtemperaturephysicsinthebackgroundofgrowthof this technology.							
	CO4	Articulate the knowledge about electric current resistance,capacitance in terms of potential electric field and electric correlatetheconnectionbetweenelectricfieldandmagneticfieldan danalyzethemmathematicallyverifycircuitsandapplytheconcepts toconstructcircuitsandstudythem.							
	CO5	Interpret the real life solutions using AND, OR, NOT basiclogicgatesandintendtheirideastouniversalbuildingblocks. InferoperationsusingBooleanalgebraandacquireelementaryidea sofICcircuits.Acquire information about various Govt. programs/ institutions in this field.							

MAPPING WITH PROGRAM OUT COMES:

 $Mapcourse outcomes ({\bf CO}) for each course with program outcomes ({\bf PO}) in the 3-$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S	М
CO3	М	S	S	S	S	М	S	S	S	S
CO4	S	S	S	S	S	S	S	М	S	S
CO5	М	S	S	S	S	S	S	S	S	S

pointscaleofSTRONG(S),MEDIUM(M)andLOW(L).

COURSE	EVEN SEMESTER - CORE
COURSETITLE	ALLIED PRACTICALS – I
CREDITS	3/2
COURSE	Apply various physics concepts to understand Properties of Matter
OBJECTIVES	and waves, set up experimentation to verify theories, quantify and
	analyse, able to do error analysis and correlate results
A NIXZ CLASSICS AND LOD	

ANY Seven only

- 1. Young's modulus by non-uniform bending using pin and microscope
- 2. Young's modulus by non-uniform bending using optic lever, scale and telescope
- 3. Rigidity modulus by static torsion method.
- 4. Rigidity modulus by torsional oscillations without mass
- 6. Surface tension and interfacial Surface tension drop weight method
- 7. Comparison of viscosities of two liquids burette method
- 8. Specific heat capacity of a liquid half time correction
- 9. Verification of laws of transverse vibrations using sonometer
- 10. Calibration of low range voltmeter using potentiometer
- 11. Determination of thermo emf using potentiometer
- 12. Verification of truth tables of basic logic gates using ICs
- 13. Verification of De Morgan's theorems using logic gate ICs.
- 14. Use of NAND as universal building block.

Note : Use of digital balance permitted

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	ALLIED PAPER
COURSETITLE	ALLIED PHYSICS –II
CREDITS	3

COURSE	To understand the basic concepts of optics, modern Physics,
OBJECTIVES	concepts of relativity and quantumphysics, semiconductorphysics,
	and electronics.

UNITS	COURSE DETAILS
UNIT-I	OPTICS: interference – interference in thin films –colors of thin films – air wedge – determination of diameter of a thin wire by air wedge – diffraction – diffraction of light vs sound – normal incidence – experimental determination of wavelength using diffraction grating (no theory) – polarization – polarization by double reflection – Brewster's law – optical activity – application in sugar industries
UNIT-II	ATOMIC PHYSICS: atom models – Bohr atom model – mass number – atomic number – nucleons – vector atom model – various quantum numbers – Pauli's exclusion- photo electric effect – Einstein's photoelectric equation – applications of photoelectric effect: solar cells, solar panels, optoelectric devices
UNIT-III	NUCLEAR PHYSICS: nuclear models – liquid drop model – magic numbers – shell model – nuclear energy – mass defect – binding energy – radioactivity – uses – half life – mean life - radio isotopes and uses –controlled and uncontrolled chain reaction – nuclear fission – energy released in fission – chain reaction – critical reaction – critical size- atom bomb – nuclear reactor – breeder reactor – nuclear fusion – thermonuclear reactions – differences between fission and fusion.
UNIT-IV	INTRODUCTION TO RELATIVITY AND GRAVITATIONAL WAVES : frame of reference – postulates of special theory of relativity – Galilean transformation equations – Lorentz transformation equations – derivation – length contraction – time dilation – twin paradox – mass-energy equivalence.
UNIT-V	SEMICONDUCTOR PHYSICS: p-n junction diode – forward and reverse biasing – characteristic of diode – zener diode – characteristic of zener diode – voltage regulator – full wave bridge rectifier – construction and working – advantages (no mathematical treatment) – USB cell phone charger –introduction to e-vehicles and EV charging stations
UNIT-VI	PROFESSIONAL COMPONENTS: Expert lectures –seminars — webinars – industry inputs – social accountability – patriotism

	1.	R.Murugesan (2005), AlliedPhysics, S.Chand&Co, NewDelhi.
	2.	K.ThangarajandD.Jayaraman(2004),
		AlliedPhysics,PopularBookDepot,Chennai.
	3.	BrijlalandN.Subramanyam(2002),
ΤΕΥΤ ΒΟΟΚΟ		TextbookofOptics,S.Chand&Co,NewDelhi.
IEAI BOOKS	4.	R.Murugesan (2005), ModernPhysics, S.Chand&Co, NewDelhi,
	5	A Subramaniyam Applied Electronics
	5.	2 nd Edn NationalPublishingCo Chennai
		2 Dun, i varonan aonomingeo., enemai.
	1.	ResnickHallidayandWalker (2018), FundamentalsofPhysics,
		11 th Edn.,JohnWilleyandSons, Asia Pvt.Ltd.,Singapore.
	2.	D.R.KhannaandH.R. Gulati (1979).Optics,
		S.Chand&Co.Ltd.,New Delhi.
	3.	A.Beiser (1997).
REFERENCE		ConceptsofModernPhysics,TataMcGrawHillPublication.NewD
BOOKS		elhi.
	4.	Thomas L. Floyd (2017), Digital Fundamentals, 11 th Edn.
		Universal Book Stall. NewDelhi.
	5.	V.K.Metha(2004). Principlesofelectronics. 6 th Edn.
		.S.ChandandCompany, New Delhi.
	1.	https://www.berkshire.com/learning-center/delta-p-
		facemask/https://www.voutube.com/watch?v=OrhxU47gti4htt
		ps://www.youtube.com/watch?time_continue=318&y=D38Big
		UdL5U&feature=emb_logo
	2.	https://www.voutube.com/watch?v=JrRrp5F-Ou4
WEBLINKS	3	https://www.validyne.com/blog/leak-test-using-pressure-
	5.	transducers/
	4	https://www.atoptics.co.uk/atoptics/blsky.htm -
	5	https://www.metoffice.gov.uk/weather/learn-
	5.	about/weather/ontical_effects
	1	about weather optical-effects

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

	Explaintheconceptsof interferencediffractionusingprinciplesof
CO1	superpositionofwaves and rephrase the concept of polarization
	based on wave patterns
	Outline the basic foundation of different atom models and
	variousexperiments establishing quantum concepts. Relate the
CO2	importance
02	of interpreting improving theoretical models based on observation.
	Appreciate interdisciplinary nature of science and in solar energy
	related applications.
	Summarizethepropertiesofnuclei,
	nuclearforcesstructureofatomicnucleusandnuclear models.
~~~	Solveproblems on delayratehalf-lifeand mean-life.Interpret
CO3	nuclear processes likefission and fusion. Understand the
	importance of nuclear energy, safety measures carried and get
	field
	Tedescribethebesiesensentsefreletivitylikesegyiyelensenringin
	inortial frames and L grantz transformation. Extend their
	knowledge on concepts of relativity and vice versa. Relate this
<b>CO4</b>	with current research in this field and get an overview of
	research projects of National and International importance
	like LIGO ICTS and opportunities available
	Summarize the working of semiconductor devices like
CO5	iunction diode. Zenerdiode, transistors and practical devices
	we daily use like USB chargers and EV charging stations.
	CO2 CO3 CO4

# MAPPING WITH PROGRAM OUT COMES:

Mapcourse outcomes (CO) for each course with program outcomes (PO) in the 3-points cale of STRONG (S), MEDIUM (M) and LOW (L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S	М
CO3	М	S	S	S	S	Μ	S	S	S	S
CO4	S	S	S	S	S	S	S	М	S	S
CO5	М	S	S	S	S	S	S	S	S	S

COURSE	EVEN SEMESTER – CORE					
COURSETITLE	ALLIED PRACTICALS – II					
CREDITS	3/2					
COURSE OBJECTIVES	Apply various Physics concepts to understand concepts of Light, electricity and magnetism and waves, set up experimentation to verify theories, quantify and analyze, able to do error analysis and correlate results					
Any Eight						
1. Radius of curvature of lens by forming Newton's rings						
2. Thickness of	2. Thickness of a wire using air wedge					
3. Wavelength	Wavelength of mercury lines using spectrometer and grating					

- 4. Refractive index of material of the lens by minimum deviation
- 5. Refractive index of liquid using liquid prism
- 6. Determination of AC frequency using sonometer
- 7. Specific resistance of a wire using PO box
- 8. Thermal conductivity of poor conductor using Lee's disc
- 9. Determination of figure of merit table galvanometer
- 10. Determination of Earth's magnetic field using field along the axis of a coil
- 11. Characterisation of Zener diode
- 12. Construction of Zener/IC regulated power supply
- 13. Construction of AND, OR, NOT gates using diodes and transistor or discrete components.
- 14. NOR gate as a universal building block
- 15. NAND gate as a universal building block
- 16. AND, OR and NOT gate using IC's
- 17. Characterisation of Junctiondiode

<b>Continuous Internal Assessment</b>	End Semester Examination	Total	Grade
25	75	100	